Browse > Article
http://dx.doi.org/10.3741/JKWRA.2015.48.11.905

Analysis on Spatial Variability of Rainfall in a Small Area  

Kim, Jong Pil (Water Resources and Environment Research Department, Korea Institute of Civil Engineering and Building Technology)
Kim, Won (Water Resources and Environment Research Department, Korea Institute of Civil Engineering and Building Technology)
Kim, Dong-Gu (Water Resources and Environment Research Department, Korea Institute of Civil Engineering and Building Technology)
Lee, Chanjoo (Water Resources and Environment Research Department, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of Korea Water Resources Association / v.48, no.11, 2015 , pp. 905-913 More about this Journal
Abstract
This study deployed six rain gauges in a small area for a dense network observing rainfall and analyzed the spatial variability of rainfall. They were arranged in a $2{\times}3$ rectangular grid with equal space of 60 m. The rainfall measurements from five gauges were analyzed during the period of 50 days because one was seriously affected by alien substance. The maximum difference in cumulative rainfall from them is approximately 38.5 mm. The correlation coefficients from hourly rainfall time series differ from each other while daily rainfall coincide. The coefficient of variation in hourly rainfall varies up to 224% and that in daily rainfall up to 91%. The results from uncertainty analysis show that with only four rain gauges areal mean rainfall cannot be estimated over 95% accuracy. For reliable flood prediction and effective water management it is required to develop a new technique for the estimation of areal rainfall.
Keywords
Rainfall; Spatial variability; Point measurements; Uncertainty; Areal rainfall;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bitew, M.M., Gebremichael, M., Hirpa, F.A., Michael, Y., Seleshi, Y., and Girma, Y. (2009). On the local-scale spatial variability of daily rainfall in the highlands of the Blue Nile: Observational evidence. Proceedings of the World Environmental and Water Resources Congress 2009: Great Rivers, pp. 3801-3809.
2 Habib, E., Krajewski, W.F., and Ciach, G.J. (2001). "Estimation of rainfall interstation correlation." Journal of Hydrometeorology, Vol. 2, pp. 621-629.   DOI
3 Jensen, N.E., and Pedersen, L. (2005). "Spatial variability of rainfall: Variations within a single radar pixel." Atmospheric Research, Vol. 77, pp. 269-277.   DOI
4 Krajewski, W.F., Ciach, G.J., and Habib, E. (2003). "An analysis of small-scale rainfall variability in different climatic regimes." Hydrological Science Journal, Vol. 48, No. 2, pp. 151-162.   DOI
5 McMillan, H., Krueger, T., and Freer, J. (2012). "Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality." Hydrological Processes, Vol. 26, pp. 4078-4111.   DOI
6 Pedersen, L, Jensen, N.E., Christensen, L.E., and Madsen, H. (2010). "Quantification of the spatial variability of rainfall based on a dense network of rain gauges." Atmospheric Research, Vol. 95, pp. 441-454.   DOI
7 Peleg, N., Ben-Asher, M., and Morin, E. (2013). "Radar subpixel-scale rainfall variability and uncertainty: Lessons learned from observations of a dense raingauge network." Hydrology and Earth System Science, Vol. 17, pp. 2195-2208.   DOI
8 Rodriguez-Iturbe, I., and Mejia, J.M. (1974). "The design of rainfall networks in time and space." Water Resources Research, Vol. 10, No. 4, pp. 713-728.   DOI
9 Son, A., Han, K., and Bae, S. (2013). "Temporal and spatial characteristics analysis of rainfall in Seoul." Journal of the Korean Society of Hazard Mitigation, Vol. 13, No. 3, pp. 83-95.   DOI
10 Villarini, G., Mandapaka, P.V., Krajewski, W.F., and Moore, R. (2008). "Rainfall and sampling uncertainties: A rain gauge perspective." Journal of Geophysical Research, Vol. 113, D11102, DOI:10.1029/2007JD009214.   DOI
11 Yoo, C., Lee, J., Yang, D., and Chung, J. (2011). "Spatial analysis of rain gauge network: Application of uniform and Poisson distributions." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 4, pp. 179-187.   DOI