• Title/Summary/Keyword: maximum curve

검색결과 1,610건 처리시간 0.036초

오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명 (Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System)

  • 안정필;이민희
    • 자원환경지질
    • /
    • 제51권2호
    • /
    • pp.87-97
    • /
    • 2018
  • 세슘은 물속에서 고상보다는 이온이나 착염 등 용존 형태로 존재하는 특성이 강하여, 오염 수계로부터 세슘 제거가 어려운 것으로 알려져 있다. 최근 많은 연구들이 수계 내에서 세슘의 제거효율이 높은 흡착제를 개발하는데 집중하고 있다. 본 연구에서는 대나무 활성탄을 흡착제로 사용하여 수계 내에 존재하는 세슘을 효과적으로 제거하는 실내실험을 실시하였다. 수용액으로부터 대나무 활성탄의 세슘 제거효율을 측정하고, 최적의 세슘 제거능을 가지는 흡착 조건을 도출하고자 다양한 조건에서 흡착 배치실험을 수행하였다. 국내에서 유통되고 있는 5 종류의 대나무 활성탄의 표면 특성을 SEM-EDS와 XRD 분석으로 규명하였으며, 이 중에서 비표면적이 큰 3 종류의 대나무 활성탄을 대상으로 세슘 제거 배치실험을 실시하였다. 다양한 초기 세슘 농도를 가지는 인공수(0.01~10 mg/L 범위)를 대상으로 대나무 활성탄에 의한 수용액 내 세슘 제거량을 측정하여 제거효율을 계산하였고, 두 종류의 흡착 등온식들을 흡착 배치실험 결과에 대응시켜 흡착 상수값을 결정함으로서, 대나무 활성탄의 세슘 흡착 특성을 규명하였다. FE-SEM 분석 결과, 대나무 활성탄은 표면이 다수의 기공을 포함하는 대나무의 섬유질 조직을 그대로 유지하는 입자들로 구성되어, 이들 섬유질 조직 내 다양한 형태의 기공들과 엽상조직 표면들이 주요 세슘 흡착공간인 것으로 밝혀졌다. 흡착 배치실험 결과, C type 대나무 활성탄의 세슘 제거효율이 가장 높았는데, 특히 수용액의 세슘 초기 농도가 1.0 mg/L 이하인 경우에도 75 % 이상(최고 82 %)을 나타내어, 원전사고 등에 의해 오염된 현장 지하수나 지표수(해수 포함)의 세슘농도가 대부분 1.0 mg/L 이하임을 고려하면, 실제 오염수 정화 가능성이 높을 것으로 밝혀졌다. 수용액의 온도는 $5-15^{\circ}C$ 범위, pH는 3-11 범위에서 높은 세슘 제거효율이 일정하게 유지되는 것으로 나타나 다양한 오염수에 적용할 수 있을 것으로 판단되었다. 흡착 배치실험 결과는 Langmuir 흡착모델과 유사하였으며, C type 대나무 활성탄의 최대흡착농도($q_m:mg/g$)값은 63.4 mg/g으로 기존의 상용화된 흡착제 값보다 높았고, 수용액의 초기 세슘 농도가 1.0 mg/L이하인 경우 표면흡착률(surface coverage) 값도 낮게 유지되어, 적은 양의 세슘으로 오염된 수계를 효과적으로 정화할 수 있음을 입증하였다.

Meat Production Characteristics of Black Bengal Goat

  • Chowdhury, S.A.;Faruque, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.848-856
    • /
    • 2004
  • Black Bengal goat is primarily reared for meat, skin comes here as a by-product. The present trial describes the effect of age on different carcass characteristics of Black Bengal goats of either sex. A total of 61 Black Bengal goats of different age and sex groups were slaughtered. They were reared under semi-intensive management on milk alone or with concentrates (of 10.14 MJ ME and 10.48 g M/kg DM) and freshly cut Napier grass (2 MJ ME and 25 g CP/kg of fresh matter) that provides the estimated NRC (1981) requirement. The four age groups were: pre-weaned kids (0-90 day), post-weaned kids (91-180 days), growing (181-365 days) and adult (>365 days). Goats were slaughtered according to 'Halal' method by severing the major vessels of the throat by a transverse cut. Different slaughter parameters of Black Bengal goat can be best predicted from the equations as follows: live weight (kg)=0.801 (shoulder height (cm))-24.32, ($r^{2}$=0.94); carcass weight (kg)=0.364 (height at hind legs (cm))-11.54, ($r^{2}$=0.91); edible weight (kg)=0.623 (shoulder height (cm))-19.94, ($r^{2}$=0.91) and saleable weight (kg)=0.701 (shoulder height (cm))-21.99, ($r^{2}$=0.92). Live weight, carcass weight, edible weight and saleable weight of castrated goat at one-year onward ranges from 20-22, 9.4-10.5, 14-16 and 16.6-18.8 kg, respectively, which are about 80% higher than most of the reported observations on Black Bengal goat of same age and sex. Slaughter weight, warm carcass weight, edible weight and saleable weight increased curvilinearly with age of slaughter but not affected (p>0.05) by sex. However, linearity of the response curve of affect of age on mentioned parameters ends at around 9 months. Visceral fat as per cent of live weight increased curvilinearly with age and attain its maximum (about 6%) at about 500 days. However, linear part of the quadratic model ends at about 300 days when visceral fat content is about 4.8% of body weight. Blood and skin yield for one-year old male goat was 797 g and 1.61 kg, respectively. Absolute yield of blood and skin increased curvilinealry and attained maximum level at about 400 days (13.3 months). Average proportion of different carcass cut were - round 27%, rump 7%, loin 10%, ribs (6-12th) 14%, shoulder 21%, Neck 7%, chest 14%. Thigh and shoulder constituted about 48.3% of the cold carcass weight. Overall crude protein content of meat samples of different carcass cuts progressively decreased with age starting from 57 at 0-90 days to 58, 47 and 33 per cent, respectively at 91-180, 181-365 and >365 days, respectively. Overall meat fat content increased almost linearly from 11.1% during 91-180 days to 22.9 and 39.5% during 181-365 and >365days, respectively. Results from this trial suggest that both carcass yield and carcass composition changes with age; and sex have little or no effect on carcass yield and carcass composition. However, caution should be made in using second conclusion as there were few female animals slaughtered relative to the male. Optimum slaughter age for Black Bengal goat reared under semi-intensive management with adequate feeding and management would be about 9 months when their live weight, warm carcass weight, edible and saleable weight of carcass can be about 16.74, 7.28, 12.05 and 13.81 kg, respectively.

금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거방법(除去方法)에 관(關)한 연구(硏究) : 중금속(重金屬) 농도(濃度), pH 및 온도(溫度)의 효과(效果) (Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Effects of Metal Concentration, pH and Temperature)

  • 양재의;신용건;김정제
    • 한국토양비료학회지
    • /
    • 제26권1호
    • /
    • pp.37-42
    • /
    • 1993
  • 본(本) 연구(硏究)에서는, 유기(有機)리간드-중금속(重金屬) 착염형성(錯鹽形成) 원리(原理)를 적용(適用)하여 수용액(水溶液) 중(中) 중금속(重金屬)을 제거(除去)하는 방법(方法)을 연구(硏究)하는 일환(一環)으로, 침전형성(沈澱形成) 반응(反應)에 미치는 중금속(重金屬)의 농도(濃度), pH 및 온도(溫度)의 효과(效果)를 조사(調査)하였다. 부숙(腐熟)된 퇴비(堆肥)로부터 추출한 부식산(腐植酸)과 훌브산(酸)을 중금속(重金屬) 수용액(水溶液)과 반응시켜 침전(沈澱)시키고, 복합체(複合體)를 여과법(濾過法)에 의해 분리(分離)하여 중금속(重金屬)의 제거효율(除去效率)를 측정했다. 상대(相對) 리간드가 부식산(腐植酸)일때, 침전형성에 미치는 중금속(重金屬)의 농도효과(濃度效果)를 3가지 유형(類型)으로 나타났다. 중금속의 처리농도가 일전 수준(水準)에 도달하기 전(前)까지는 농도(濃度)가 증가해도 침전(沈澱)이 형성되지 않았으며, 그 후(後)부터는 침전형성율(沈澱形成率)이 증가하여 포화점에 도달했고, 포화점을 지나서는 다시 감소하였다. 침전형성(沈澱形成)을 시작(始作)할 수 있는 중금속(重金屬)과 리간드의 농도비율(濃度比率)은 중금속(重金屬)의 종류(種類)와 리간드의 농도(濃度) 의존성(依存性)을 보여 주었다. 포화침전(飽和沈澱)을 형성할 때 1mg의 부식산과 침전을 형성할 수 있는 양(量)은 Pb가 Cu에 비해 1.3배 이상 많았다. 반면에 상대(相對) 리간드가 훌브산(酸)인 경우 중금속의 침전농도(沈澱濃度)는 중금속(重金屬)의 처리농도(處理濃度)에 비례하여 증가(增加)하였다. 훌브산(酸)에 의한 Pb의 침전효율(沈澱效率)은 훌브산(酸)의 농도(濃度)에 관계없이 거의 100%였으나, Cu는 훌브산(酸)의 농도(濃度)가 높을수록 높았으며, 12~19%였다. pH는 Pb과 FA사이의 침전형성량(沈澱形成量)에 큰 영향(影響)을 미쳤으며, pH가 한 단위(單位) 증가(增加)할 때 침전형성율(沈澱形成率)은 최고 6배까지 증가하였다. 침전형성농도가 급증(急增)하는 pH의 범위는 유기(有機)리간드의 pH 급변구간(急變區間)과 일치(一致)했다. 반응온도는 부식산(腐植酸)과 중금속(重金屬)사이의 침전형성율(沈澱形成率)에 영향을 미치지 않았다. 그러나, 반응온도가 $15^{\circ}C$에서 $55^{\circ}C$로 증가함에 따라, Cu-훌브산의 침전형성율은 2배 가량 증가하였으며, Pb-홀브산의 경우는 6%의 증가를 보였다.

  • PDF

강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(II) (A Study on the Fatigue Strength of the Welded Joints in Steel Structures(II))

  • 박제선;정영화;장동일
    • 대한토목학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 1986
  • 강구조물(鋼構造物)의 girder중(中) 중요형식(重要形式)인 판항(板桁)에서 덮개판(板) 및 수직보강재(垂直補剛材)와 판항(板桁)이나 상자항(箱子桁)의 격점부(格點部)에 사용도는 연결판(連結板) 등의 용접연결부(鎔接連結部)를 포함하는 실물(實物)을 modeling하여 직접 피로시험(疲勞試驗)을 행하지 않고서도 계산에 의하여 S-N 선도(線圖)를 그려서 피로강도(疲勞强度)를 추정(推定)할 수 있는 계산식 및 program을 정립하였다. 또, 실물시험편(實物試驗片)에 대한 피로시험(疲勞試驗)을 행하여 계산에 의한 S-N 선도상(線圖上)에 plot하여 서로 비교 검토하였다. 이로써 다음과 같은 결과를 얻었다. 계산에 의한 피로강도(疲勞强度)가 실험(實驗)에 의한 실제 피로강도(疲勞强度)보다 다소 낮게 나타났다. 계산에 의한 방법은 초기균열(初忌龜裂) $a_i$가 발생한 다음부터 파단시(破斷時)까지의 피로수명(疲勞壽命) $N_p$에 대한 것임에 비해 실험(實驗)에 의한 것은 초기균열(初忌龜裂) $a_i$의 발생수명(發生壽命) $N_c$까지를 포함한 총(總) 피로수명(疲勞壽命) $N=N_c+N_p$에 대한 것이므로 오히려 당연한 결과라 생각된다. 그 차이가 그다지 크지 않으며, 구조물(構造物)의 안전성(安全性)을 생각할 때 계산(計算)에 의한 결과가 안전측(安全側)에 해당하므로 실제 구조물(構造物)의 피로설계(疲勞設計) 시(時) 그대로 적용하여도 무방할 것으로 생각된다. 참고로 저강도강(低强度鋼)인 SS 41 시험편(試驗片)을 각 경우 3개씩 제작하여 같은 피로시험(疲勞試驗)을 행하여 비교해 보았다. 덮개판(板)의 경우 시험최대응력(試驗最大應力) $14kg/mm^2$ 정도 이상(以上)에서 서서히, 수직보강재(垂直補剛材)의 경우 실험최대응력(實驗最大應力) $31kg/mm^2$ 정도 이하(以下)에서 급격(急激)히, 고강도강(高强度鋼)인 SWS 50 시험편(試驗片)의 경우보다 피로강도(疲勞强度)가 더 커진 경향을 나타내고 있다. 이는 저강도강(低强度鋼)에서 피로강도(疲勞强度)가 낮을 것이라는 상식적(常識的)인 기대와는 다른 특징(特徵)이지만 시험편(試驗片) 3개씩만의 결과이므로 확정적(確定的)인 결론이라고 단언(斷言)할 수는 없겠으며, 앞으로 더 많은 실험(實驗)을 행하여 확인해 보아야 할 것이라 생각된다.

  • PDF

Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성 (Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields)

  • 최태진;김진희;김옥배
    • Radiation Oncology Journal
    • /
    • 제16권3호
    • /
    • pp.337-345
    • /
    • 1998
  • 목적 : 전신피부의 수 mm 깊이에 한정된 피부 종양의 전신전자선조사에서 균등선량을 얻기위해, 원거리 전자선조사면에 대한 선량특성을 얻고 상하6방향조사에 의한 전신피부선량분포를 조사하였다. 대상 및 방법 : 전신조사를 위한 실험적 선량분포는 전자선 타켓-피부간 거리 300 cm에서, 크기가 105*105 $cm^2$ (콜리메-터 35*35 $m^2$, TSD 100 cm) 인 조사면으로 4 MeV 전자선의 심부선량률, 공간선량분포, 에너지감쇠에 의한 선량률 변화 등의 선량특성이 정해졌다. 환자는 상하 6방향조사가 이루어지는 동안 안정된 위치를 유지하기 위하여 양손을 치켜들고 기둥막대를 잡을 수 있는 발판에 위에 표시해둔 위치에 서게 하였다. 4 MeV 전자선 에너지를 감쇠 시켜 산란선고 피부선량을 높이기 위해 전자선 통로상 환자 전면의 20 cm 거리에 0.5 cm 두께의 산란체인 아크릴판을 설치하였다. 전신피부의 흡수선량은 테프론혼합 CaSO4:Dy 열형광소자 (1 mm 직경 * 6 mm 길이)를 전신 74 곳에 부착하여 분할조사면에 의한 합성선량을 평가하였다. 결과 : 전자선 타켓-피부간 거리 300 cm에서 얻어진 105*105 $cm^2$ 의 큰 조사면의 선량 반치폭은 130 cm 였으며, 80$\%$ 폭은 86 cm 로 나타났으며, 두 조사면을 FWHM 만큼 이동하여 두 조사면을 25 cm 띄워 조사한 합성선량분포에서 선량률이 $100\pm10\%$ 인 균등조사면의 폭은 186 cm 로 확장되었다. 인체전면 20 cm 위체에 0.5 cm 아크릴판을 삽입한 결과, 4 MeV 전자선은 최대선량점 5 mm, 80$\%$ 깊이가 7 mm, 50$\%$ 깊이는 10.7 mm를 보여 감쇠된 전자선의 평균에너지는 2.5 MeV 였다. 큰 조사면의 선속 중심에서 50 cm 떨어진 위치의 심부선량률은 중심선속의 심부선량과 거의 동일 값을 보였다. 전신피부조사에 의한 환자의 선량분포는 인체의 돌출부와 굴곡부분을 제외하고는 비교적 균등한 선량이 도달되었으며, 돌출부와 분할조사면이 잘 이루어지지 않는 중첩조사부위는 각각 30$\%$ 와 60-100$\%$ 의 과다선량이 도달되어 치료중 차폐가 불가피한 반면, 인체구조상 전자선이 가리워지는 두정부, 회음부 및 대퇴부 내측은 선량이 거의 도달 되지 않는 곳이 생겨지므로 부가적 조사가 필요함을 알 수 있었다. 결론 : 전신피부조사는 2-3 MeV의 저에너지 전자선빔에 의해 피하 수 mm 깊이에 80$\%$ 의 선량을 도달시킬 수 있으며, 높은 에너지에서는 흡수체를 이용하여 적정에너지를 얻을 수 있다. 전신피부조사에서 전신균등선량은 전자선을 상하 각각 6문조사로 고정분할 조사하는 경우 전자선이 가리워지는 부위를 제외하고 대개 $\pm10\%$ 의 선량오차범위에 들었으나, 돌출부위의 선량과다부위에는 차폐가 필요하였으며, 전자선이 가리워지는 부위는 부가치료를 통해 임상에 적합한 균등선량분포를 얻을 수 있다.

  • PDF

전극 구조의 최적화를 통한 저전력 열광학 스위치 설계 (Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization)

  • 최철현;공창경;이민우;성준호;이승걸;박세근;이일항;오범환
    • 한국광학회지
    • /
    • 제20권5호
    • /
    • pp.266-271
    • /
    • 2009
  • 본 논문에서는 높은 소멸비뿐만 아니라 낮은 파워 소모를 가지는 방향성 결합기 구조의 열광학 스위치를 설계하였다. 설계된 스위치는 전극의 열발생 유무에 따라 폴리머의 굴절률이 변하는 열광학 효과를 이용하여 동작한다. 전극에 파워가 인가되지 않으면(OFF), 입사된 빛은 반대쪽 도파로로 대부분 전이된다. 전극에 일정수준 이상으로 파워가 인가되면(ON), 입력 도파로로 입사된 빛은 반대쪽 도파로의 굴절률이 낮아져 입력 도파로로 진행한다. 방향성 결합기 스위치는 소멸비 일반화 곡선과 입력 도파로의 수평이동 방법을 이용하여 설계되었다. 결합길이는 1,610 ${\mu}m$, on과 off 상태의 소멸비는 각각 -28, -30 dB로 설계되었다. 또한, 본 논문에서 전극 구조는 열분석을 통해 최적화되었다. 전극의 폭(w)이 증가하고 전극과 도파로의 중심간격(d)이 감소할수록 도파로로 전달되는 열은 증가하였다. 전극에서 발생된 열은 반대쪽 도파로에도 영향을 주기 때문에 두 도파로간의 온도차이는 주어진 w와 d에 따라 변한다. 이때, 최대의 온도차이를 보이는 특정한 조건이 존재하였다. 최대 온도차이는 전극의 폭이 넓을수록, 전극의 온도가 높을수록 증가한다. 특히, 스위칭에 필요한 온도차이를 최대 온도차이 조건으로 설계하면 전극의 온도를 낮출 수 있다. 최대 온도차이 조건은 열광학 스위치의 파워소모를 감소시키는 방안이 될 것으로 기대된다.

Oxolinic acid의 경구투여, 주사 및 약욕에 따른 넙치, Paralichthys olivaceus 체내 약물동태학적 특성 (Pharmacokinetics of oxolinic acid in cultured olive flounder Paralichthys olivaceus by oral administration, injection and dipping)

  • 정승희;최동림;김진우;조미라;지보영;서정수
    • 한국어병학회지
    • /
    • 제22권2호
    • /
    • pp.125-135
    • /
    • 2009
  • Oxolonic acid (OA)를 넙치(평균체중 90 g)에 1회 경구투여(15, 30 및 60 ㎎/㎏ body weight), 1회 복강주사(10 및 20 ㎎/㎏ body weight) 및 1시간동안 약욕(30 및 50 ppm)한 다음, 경시적(3시간-144시간)인 혈장내 OA의 잔류농도를 분석하였다. 15, 30 및 60 ㎎/㎏ 농도로 경구투여한 모든 시험구에서 투여 10~15시간째 각각 1.92, 2.45 및 3.72 $\mu{g}/m\ell$로 최대혈중농도를 나타내었다. 10 및 20 ㎎/㎏ 농도로 복강주사한 경우, 투여 10시간째 각각 4.1 및 4.8 $\mu{g}/m\ell$로 최대혈중농도를 나타내었다. 약욕한 시험구의 경우, 30 및 50 ppm 시험구는 각각 투여 5-30시간째 0.22 및 0.38 $\mu{g}/m\ell$로 최대혈중농도를 나타내었다. OA의 투여방법에 따른 넙치 체내 약물 혈중농도 측정결과를 바탕으로 one- compartment model로 WinNonlin program을 이용하여 OA의 흡수, 배설, 반감기 등 약물동태학적 매개변수 (parameter)를 조사하였다. 15, 30 및 60 ㎎/㎏을 경구투여한 경우, 혈장농도-시간곡선하 면적 (AUC)은 각각 70.93, 120.0 및 141.86 $\mu{g}$ $h/m\ell$, 혈중최고농도의 도달시간($T_{max}$)은 16.22, 20.39 및 17.33 h, 혈중최고농도 ($C_{max}$)는 1.61, 2.40 및 3.01 $\mu{g}/m\ell$로 계산되었다. 10 및 20 ㎎/㎏을 복강주사한 경우, 혈장농도-시간곡선하 면적(AUC)은 각 각 184.7 및 315.92 $\mu{g}$ $h/m\ell$, 혈중최고농도의 도달시간($T_{max}$)은 5.91 및 6.26 h, 혈중최고농도($C_{max}$)는 4.19 및 4.45 $\mu{g}/m\ell$로 계산되었다. 30 및 50ppm으로 약욕한 경우, 혈장농도-시간곡선하 면적 (AUC)은 각각 17.58 및 21.69 $\mu{g}$ $h/m\ell$, 혈중 최고농도의 도달시간($T_{max}$)은 19.08 및 31.43 h, 혈중최고농도($C_{max}$)는 0.22 및 0.25 $\mu{g}/m\ell$로 계산되었다.

Amoxicillin trihydrate의 단독 경구투여 및 정맥투여에 따른 뱀장어, Anguilla japonica 체내 약물동태학적 특성 (Pharmacokinetics of amoxicillin trihydrate in cultured eel Anguilla japonica by single oral and intravenous administrations)

  • 전은지;서정수;김진도;정승희;김명석;황지연;박명애;지보영;김진우;김이청
    • 한국어병학회지
    • /
    • 제23권3호
    • /
    • pp.357-367
    • /
    • 2010
  • 아목시실린(Amoxicillin trihydrate; Amox)을 뱀장어(평균 체중 $220{\pm}10\;g$)에 1일 1회 경구투여(40 및 80 mg/kg body weight) 및 정맥투여(1 mg/kg)한 다음, 경시적(0시간~720시간)으로 혈장내 Amox의 잔류농도를 분석하였다. 40 및 80 mg/kg 농도로 경구투여한 모든 시험구에서 투여 6시간째 각각 $3.3{\pm}0.5$$3.4{\pm}0.1\;{\mu}g/ml$로 최대혈중농도를 나타내었다. Amox의 모든 시험구는 투여 720시간째 혈중에서 검출되지 않았다. Amox의 경구투여방법에 따른 뱀장어 체내 약물 혈중농도 측정결과를 바탕으로 WinNonlin program을 이용한 2-compartment model로 하여 Amox의 흡수, 배설, 반감기 등 약물동태학적 매개변수(parameter)를 조사하였다. 2-compartment model을 이용한 분석을 통하여 40 및 80 mg/kg Amox를 경구투여한 경우, 혈장농도-시간곡선하 면적(AUC)은 각각 464 및 $667\;{\mu}g{\cdot}h/ml$, 혈중최고농도의 도달시간(Tmax)은 2.1 및 3.6 hr, 혈중최고농도(Cmax)는 3.04 및 $3.4\;{\mu}l/ml$로 계산되었다. 1 mg/kg Amox을 정맥 투여한 경우, 혈장농도-시간곡선하 면적(AUC)은 $748\;{\mu}g{\cdot}h/ml$, 혈중최고농도(Cmax)는 $4.2\;{\mu}l/ml$로 계산되었다. 1일 1회 단독으로 40 및 80 mg/kg Amox를 각각 경구 투여시의 뱀장어내 생체내이용율(F%; bioavailability)은 각각 1.6, 1.1%로 매우 낮게 나타났다. 이러한 결과는 아목시실린을 삼수화물 형태로 사용함에도 낮은 어류내 생체내이용율을 가진다는 사실을 알 수 있다.

정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향 (Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage)

  • 위승환;여경환;최학순;유인호;이진형;이희주
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.448-454
    • /
    • 2021
  • 본 연구는 생육초기 저온 저일조 조건이 토마토의 수량 및 품질에 미치는 영향을 구명하기 위해서 수행되었다. 비가림 하우스에서 정식 후 17일에 측창 개폐와 차광막을 이용하여 26일간 저온, 저온차광 처리하였다. 처리기간 동안의 토마토 GDD를 산출한 결과 저온 처리로 인해 GDD가 5.5% 감소하였다. 차광 처리에 의한 평균 일사량을 분석한 결과 대조구 대비 차광처리가 25.3% 수준이었으며, 일 최고광량의 평균을 분석한 결과 대조구, 차광처리가 각각 634, 156W·m-2였다. 처리 결과 저온차광에 의하여 엽수, 엽면적, 생체중, 건물중, SPAD를 분석한 결과 차광에 처리에 의하여 생육이 저하된 것을 볼 수 있었으며 초장은 웃자란 것을 확인할 수 있었다. 수량을 분석한 결과 첫 수확일은 정식 후 63일로 동일 하였으나 무처리구, 저온처리, 저온 강차광 순으로 각각 177, 99, 53g/plant로 최대 3.3배까지 차이를 보였으며, 최종 수확일인 정식 후 87일의 누적수량은 각각 1734, 1131, 854g/plant로 생육 초기 저온, 저온차광 처리에 의하여 수량이 각각 34.8, 50.7% 감소한 것을 확인할 수 있었다. 처리와 수확기에 따른 토마토의 품질을 조사한 결과 당도와 산도는 처리 및 수확기에 따른 차이가 없었다. 처리에 따른 광합성 특성을 조사하기 위하여 이산화탄소반응 곡선을 작성하고 광합성 기구의 생화학적 모델을 활용하여 분석한 결과 최대 광합성 속도와 J, TPU, Rd는 온도에 따른 차이를 보이지 않았으나 차광에 의하여 감소된 것을 확인할 수 있으며, Vcmax의 경우 저온 과 차광에 따라서 값이 감소되는 것을 확인할 수 있었다. 이로 보아 정식 후 생육초기 저온 저일조는 토마토의 초기생육과 광합성능력을 감소시키며, 생육이 진행되면서 생육에 대한 차이가 없어지거나 줄어들고 품질 변화도 나타나지 않았지만 누적 수량이 감소하기에 이를 방지하기 위해서는 생육초기 저온 및 저온저일조 등 이상기상 발생시 보온 및 보광이 필요하다.

주요산공재(主要散孔材) 구성요소(構成要素)의 방사방향(放射方向) 변동(變動)에 관한 연구(硏究) (Study on the Radial Variation of Structural Element in the Diffuse-Porous Woods)

  • 한철수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제15권2호
    • /
    • pp.26-52
    • /
    • 1987
  • 우리나라에 분포도(分布度)가 높은 산공재(散孔材) 중에서 구조용재(構造用材)로서 뿐만 아니라 각종 특수용재(特殊用材)로서 이용도(利用度)가 높은 자작나무과(科) 3속(屬) 7수종(樹種)을 비롯한 6속(屬) 10수종(樹種)의 주요(主要) 구성요소(構成要素)의 방사방향(放射方向)에 따른 변동(變動)을 조사(調査)하였던 바 얻어진 결과(結果)를 요약(要約)하면 다음과 같다. 주요(王要) 구성요소(構成要素)의 치수는 수에 가까운 부위(部位)에서 일정(一定) 년륜(年輪)까지 급격히 증가(增加)한 후 거의 안정(安定)되는 직선형(直線型)(Type I), 완만하게 계속 증가(增加)하는 곡선형(曲線型)(Type II) 및 서서히 감소(減少)하는 포물선형(抛物線形)(Type III)으로 구분(區分)되며 동일수종내(同一樹種內)에서도 요소별(要素別)로 서로 다른 형(型) 공존(共存)하였다. 2. 목섬유(木織維)길이의 변이형(變異型)과 크기는 Type I은 자작나무 $1.35{\pm}0.10mm$, 거제수나무 $1.20{\pm}0.13mm$, 박달나무 $1.03{\pm}0.10mm$, 서어나무 $1.18{\pm}0.37mm$, 오리나무 $1.06{\pm}0.01mm$, 산벚나무 $0.81{\pm}0.16mm$였고, Type II는 사스래나무 $1.34{\pm}0.19mm$, 물박달나무 $1.20{\pm}0.29mm$였으며 Type III은 감나무 $0.95{\pm}0.13mm$였다. 목섬유(木纖維)의 폭(幅)의 변이형(變異型)과 크기는 Type I은 서어나무 $18.7{\pm}1.8{\mu}m$, 오리나무 $18.5{\pm}1.1{\mu}m$, 고로쇠나무 $14.5{\pm}2.4{\mu}m$였고, Type II는 사스래나무 $19.3{\pm}1.4{\mu}m$, 박달나무 $17.5{\pm}1.9{\mu}m$, 산벚나무 $14.8{\pm}5.4{\mu}m$였으며, Type III은 자작나무 $19.1{\pm}1.1{\mu}m$, 물박달나무 $20.3{\pm}3.4{\mu}m$, 거제수나무 $18.6{\pm}2.8{\mu}m$, 감나무 $18.9{\pm}4.3{\mu}m$였다. 3. 도관요소(導管要素) 길이의 변이형(變異型)과 크기는 Type I이 자작나무 $0.62{\pm}0.02mm$, 사스래나무 $0.90{\pm}0.09mm$, 박달나무 $0.64{\pm}0.08mm$, 산벚나무 $0.43{\pm}0.05mm$, 고로쇠나무 $0.31{\pm}0.03mm$였고 Type II는 물박달나무 $0.72{\pm}0.22mm$, 오리나무 $0.63{\pm}0.01mm$, 감나무 $0.17{\pm}0.06mm$였으며, Type III은 거제수나무 $0.75{\pm}0.10mm$, 서어나무 $0.66{\pm}0.16mm$였다. 도관요소(導管要素) 방사방향(放射方向) 직경(直徑)의 변이형(變異型)과 크기는 Type I이 자작나무 $58.7{\pm}11.3{\mu}m$, 서어나무 $67.1{\pm}10.1{\mu}m$, 오리나무 $60.0{\pm}10.3{\mu}m$ 였고, Type II가 사스래나무 $100.7{\pm}10.7{\mu}m$, 거제수 나무 $108.9{\pm}16.6{\mu}m$, 박달나무 $79.1{\pm}17.3{\mu}m$, 산벚나무 $47.5{\pm}21.3{\mu}m$, 감나무 $141.2{\pm}59.5{\mu}m$였으며, Type III은 물박달나무 $115.0{\pm}17.4{\mu}m$, 고로쇠나무 $57.1{\pm}11.4{\mu}m$였다. 도관요소(導管要素) 접선방향(接線方向) 직경(直徑)이 변이형(變異型)과 크기는 Type I이 자작나무 $54.8{\pm}13.5{\mu}m$, 서어나무 $57.1{\pm}11.7{\mu}m$, 오리나무 $44.9{\pm}13.0{\mu}m$였고, Type II는 사스래나무 $76.5{\pm}16.9{\mu}m$, 거제수나무 $87.1{\pm}17.3{\mu}m$, 박달나무 $65.6{\pm}9.2{\mu}m$, 산벚나무 $44.9{\pm}13.0{\mu}m$, 고로쇠나무 $34.8{\pm}10.4{\mu}m$였으며, Type III은 물박달나무 $86.0{\pm}13.6{\mu}m$, 감나무 $129.3{\pm}34.5{\mu}m$였다. 단위면적당(單位面積當) 관공(管孔)의 분포(分布)는 자작나무 $54.4{\pm}3.5$개, 사스래나무 $23.0{\pm}2.8 $개, 물박달나무 $19.5{\pm}2.5$개, 거제수나무 $20.8{\pm}2.6$개 박달나무 $17.6{\pm}2.7$, 서어나무 $87.5{\pm}14.7$개, 오리나무 $79.9{\pm}11.6$개, 산벚나무 $223.1{\pm}33.2$개, 고로쇠나무 $40.6{\pm}2.4$개, 감나무 $6.6{\pm}1.5$개였다. 4. 계단상(階段狀) 천공판(穿孔板)을 갖는 수종(樹種)의 천공판(穿孔板) 길이의 변이형(變異型)과 크기는 Type I은 자작나무 $143.5{\pm}16.4{\mu}m$, 거제수나무 $139.6{\pm}16.6{\mu}m$, 오리나무 $123.3{\pm}20.6{\mu}m$였고, Type II는 사스래나무 $144.9{\pm}17.9{\mu}m$, 물박달나무 $140.4{\pm}23.4{\mu}m$였으며, Type III은 박달나무 $108.7{\pm}19.7{\mu}m$였다. 판공판상(穿孔板上) bar수(數)의 변이형(變異型)과 수(數)는 Type I은 거제수나무 13.8{\pm}2.3개, 박달나무 $11.6{\pm}2.3$개였고, Type II은 물박달나무 $15.l{\pm}6.2$개였으며, Type III은 자작나무 $16.6{\pm}8.3$개, 사스래나무 $10.1{\pm}1.7$개, 오리나무 $17.1{\pm}7.9$ 개였다. 5. 방사조직(放射組織) 높이의 변이형(變異型)과 크기는 Type I이 사스래나무 $187.3{\pm}46.5{\mu}m$, 거제수나무 $209.9{\pm}48.4{\mu}m$였고, Type II는 자작나무 346.3{\pm}, $83.4{\mu}m$, 서어나무 $297.0{\pm}87.0{\mu}m$, 오리나무 $387.3{\pm}84.7{\mu}m$, 고로쇠나무 $244.8{\pm}74.0{\mu}m$였으며, Type III은 물박달나무 $233.7{\pm}66.1{\mu}m$, 박달나무 $172.9{\pm}47.9{\mu}m$, 산벚나무 $361.8{\pm}88.8{\mu}m$, 감나무 $304.8{\pm}87.3{\mu}m$였다. 방사조직(放射組織) 폭(幅)의 변이형(變異型)과 크기는 Type I이 거제수나무 $25.5{\pm}5.3{\mu}m$, 서어나무 $44.9{\pm}16.1{\mu}m$, 오리나무 $27.3{\pm}8.3{\mu}m$였고, Type II는 자작나무 $29.8{\pm}6.3{\mu}m$, 사스래나무 $23.6{\pm}5.0{\mu}m$, 물박달나무 $33.3{\pm}8.9{\mu}m$, 박달나무 $21.9{\pm}9.3{\mu}m$, 산벚나무 $39.2{\pm}10.1{\mu}m$, 고로쇠나무 $35.2{\pm}8.9{\mu}m$였으며, Type III은 감나무 $44.2{\pm}7.6{\mu}m$였다. 6. 목섬유(木纖維), 도관요소(導管要素), 방사조직(放射組織)의 치수의 변동(變動)을 고려(考慮)하여 미성숙재(未成熟材)와 성숙재(成熟材)를 구분(區分)하면 자작나무 45년륜(年輪), 사스래나무 43년륜(年輪), 물박달나무 34년륜(年輪), 거제수나무 53년륜(年輪), 박달나무 38년륜(年輪), 서어나무 44년륜(年輪), 오리나무 31년륜(年輪), 산벚나무 24년륜(年輪), 고로쇠나무 47년륜(年輪), 감나무 30년륜(年輪)이었다.

  • PDF