Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Effects of Metal Concentration, pH and Temperature

금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거방법(除去方法)에 관(關)한 연구(硏究) : 중금속(重金屬) 농도(濃度), pH 및 온도(溫度)의 효과(效果)

  • Published : 1993.03.31

Abstract

Influences of metal concentration, pH and temperature on metal-ligand precipitate formation were investigated, as a part of projects for removing heavy metals from aqueous solution employing the principles in metal-ligand complexation. Aqueous solutions of HA or FA were reacted with those of heavy metals with 1:1 ratio. Efficiency of humic (HA) or fulvic acid (FA) on removing metals was evaluated by separating the precipitates from soltuions with the filtering method. When HA was a counter ligand, there existed three ranges of metal concentrations affecting precipitation : precipitate fromation was not available, was reached to the maximum, and afterwards was decreased again. The concentration ratios of metal to HA for initiating complexation were dependent upon kinds of metal and concentrations of ligand. Amount of Pb to form maximum precipitates per unit mg of HA was 1.3 times higher than that of Cu. When FA was a counter ligand, concentrations of metal-FA precipitates were increased proportionally with the treated metal concentrations. Efficiency of FA fro removing Pb was nearly 100%, but it was ranged from 12 to 19% for Cu, depending on FA concentration. pH exerted a considerable effect on complexation between Pb and FA, showing precipitates were increased six times at most per unit increase of pH. Ranges of pH increasing significantly the mounts of precipitates were coincied with pH jump ranges of the titration curve of organic ligands. As increasing temperature from 15 to $55^{\circ}C$, increases of FA-Cu precipitates were doubled, but those of FA-Pb were accounted for only 6%, However, HA-metal complexation was not affected by temperature.

본(本) 연구(硏究)에서는, 유기(有機)리간드-중금속(重金屬) 착염형성(錯鹽形成) 원리(原理)를 적용(適用)하여 수용액(水溶液) 중(中) 중금속(重金屬)을 제거(除去)하는 방법(方法)을 연구(硏究)하는 일환(一環)으로, 침전형성(沈澱形成) 반응(反應)에 미치는 중금속(重金屬)의 농도(濃度), pH 및 온도(溫度)의 효과(效果)를 조사(調査)하였다. 부숙(腐熟)된 퇴비(堆肥)로부터 추출한 부식산(腐植酸)과 훌브산(酸)을 중금속(重金屬) 수용액(水溶液)과 반응시켜 침전(沈澱)시키고, 복합체(複合體)를 여과법(濾過法)에 의해 분리(分離)하여 중금속(重金屬)의 제거효율(除去效率)를 측정했다. 상대(相對) 리간드가 부식산(腐植酸)일때, 침전형성에 미치는 중금속(重金屬)의 농도효과(濃度效果)를 3가지 유형(類型)으로 나타났다. 중금속의 처리농도가 일전 수준(水準)에 도달하기 전(前)까지는 농도(濃度)가 증가해도 침전(沈澱)이 형성되지 않았으며, 그 후(後)부터는 침전형성율(沈澱形成率)이 증가하여 포화점에 도달했고, 포화점을 지나서는 다시 감소하였다. 침전형성(沈澱形成)을 시작(始作)할 수 있는 중금속(重金屬)과 리간드의 농도비율(濃度比率)은 중금속(重金屬)의 종류(種類)와 리간드의 농도(濃度) 의존성(依存性)을 보여 주었다. 포화침전(飽和沈澱)을 형성할 때 1mg의 부식산과 침전을 형성할 수 있는 양(量)은 Pb가 Cu에 비해 1.3배 이상 많았다. 반면에 상대(相對) 리간드가 훌브산(酸)인 경우 중금속의 침전농도(沈澱濃度)는 중금속(重金屬)의 처리농도(處理濃度)에 비례하여 증가(增加)하였다. 훌브산(酸)에 의한 Pb의 침전효율(沈澱效率)은 훌브산(酸)의 농도(濃度)에 관계없이 거의 100%였으나, Cu는 훌브산(酸)의 농도(濃度)가 높을수록 높았으며, 12~19%였다. pH는 Pb과 FA사이의 침전형성량(沈澱形成量)에 큰 영향(影響)을 미쳤으며, pH가 한 단위(單位) 증가(增加)할 때 침전형성율(沈澱形成率)은 최고 6배까지 증가하였다. 침전형성농도가 급증(急增)하는 pH의 범위는 유기(有機)리간드의 pH 급변구간(急變區間)과 일치(一致)했다. 반응온도는 부식산(腐植酸)과 중금속(重金屬)사이의 침전형성율(沈澱形成率)에 영향을 미치지 않았다. 그러나, 반응온도가 $15^{\circ}C$에서 $55^{\circ}C$로 증가함에 따라, Cu-훌브산의 침전형성율은 2배 가량 증가하였으며, Pb-홀브산의 경우는 6%의 증가를 보였다.

Keywords

Acknowledgement

Supported by : 학술진흥재단