• Title/Summary/Keyword: maximum conversion and yield

Search Result 91, Processing Time 0.027 seconds

Study on Crude Oil Productions and its practice with Rice hull As Treated in Various Supercritical Solvents on Application of Liquefaction Technology (Liquefaction technology 적용 시 왕겨를 이용한 Crude oil 생산 및 적용 연구)

  • Shin, JoungDu;Baek, Yi;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.110-118
    • /
    • 2010
  • Supercritical treatment of liquefaction technology for rice hull was investigated the biomass conversion rate and evaluated its crude oil in respect to feasibility of burner in order to heat the green house. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160 g) of rice hull and 3,000 mL of different solvents were fed into the reactor. It was observed that the maximum crude oil yield was about 84.4 % with 1-butanol. The calorific value of crude oil from ethanol solvent were 7,752 kcal/kg. Furthermore, in case study of co-solvent with ethanol and bulk-glycerol, it observed that more than 80 % of rice hull was decomposed and liquefied in its solvent at $315{\sim}326^{\circ}C$ for 30 min. For the development of applicable bio-fuel from rice hull, it was considered that its feasibility is necessary to be carried out for co-solvent soluble portions. Regarding to utilize the crude oil into burner as fuel, it was observed that its calorific value was lower at approximately 24 % than the diesel. Also, flame length from crude oil at lower temperature was decreasing due to incomplete incineration. The temperature of warm wind on the burner was maintained between 63 and $65^{\circ}C$, and the temperature of emission line was appeared at $350{\sim}380^{\circ}C$.

Production of ʟ-Theanine Using Escherichia coli Whole-Cell Overexpressing γ-Glutamylmethylamide Synthetase with Baker's Yeast

  • Yang, Soo-Yeon;Han, Yeong-Hoon;Park, Ye-Lim;Park, Jun-Young;No, So-young;Jeong, Daham;Park, Saerom;Park, Hyung Yeon;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.785-792
    • /
    • 2020
  • ʟ-Theanine, found in green tea leaves has been shown to positively affect immunity and relaxation in humans. There have been many attempts to produce ʟ-theanine through enzymatic synthesis to overcome the limitations of traditional methods. Among the many genes coding for enzymes in the ʟ-theanine biosynthesis, glutamylmethylamide synthetase (GMAS) exhibits the greatest possibility of producing large amounts of production. Thus, GMAS from Methylovorus mays No. 9 was overexpressed in several strains including vectors with different copy numbers. BW25113(DE3) cells containing the pET24ma::gmas was selected for strains. The optimal temperature, pH, and metal ion concentration were 50℃, 7, and 5 mM MnCl2, respectively. Additionally, ATP was found to be an important factor for producing high concentration of ʟ-theanine so several strains were tested during the reaction for ATP regeneration. Baker's yeast was found to decrease the demand for ATP most effectively. Addition of potassium phosphate source was demonstrated by producing 4-fold higher ʟ-theanine. To enhance the conversion yield, GMAS was additionally overexpressed in the system. A maximum of 198 mM ʟ-theanine was produced with 16.5 mmol/l/h productivity. The whole-cell reaction involving GMAS has greatest potential for scale-up production of ʟ-theanine.

Effect of Temperatures to Crude Oil Productions with Rapeseed Straw on Application of Hydro-thermal Liquefaction Technology (Hydro-thermal Liquefaction Technology적용 시 유채대를 이용한 Crude oil생산에 미치는 반응온도의 영향)

  • Shin, JoungDu;Hong, Seung-Gil;Kwon, Soon-Ik;Park, Woo-Kyun;Park, SangWon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.104-109
    • /
    • 2010
  • Hydro-thermal liquefaction technology for rapeseed straws was investigated the biomass conversion rate with different catalysts and reaction temperatures. NaOH and KOH were used for catalysts, and the reaction temperature were ranged from 180 to $320^{\circ}C$ at every $20^{\circ}C$ of intervals for 10 minutes. The reaction was carried out in a 5,000 mL liquefaction system with dispenser and external electrical furnace. Raw materials (160g), 2,000 mL of distilled water and 10% (wt/wt) of catalyst to plant residue were fed into the reactor. It was observed that the maximum crude oil yield was about 36% at temperature range, $260{\sim}280^{\circ}C$ with KOH and at $300^{\circ}C$ with NaOH, respectively. It was observed that the more calorific values of crude oil, the higher reaction temperature with KOH, but it had the reverse pattern in NaOH.

Plasmatron Development for a Hydrogen Production (수소 생성을 위한 플라즈마트론 개발)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal condition of the SynGas production by reforming of propane using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on propane conversion, yield of hydrogen and $H_2/CO$ ratio as well as correlation of syngas were studied. When the variations of $O_2/C_3H_8$ flow ratio, $H_2O/C_3H_8$ flow ratio and $CO_2/C_3H_8$ flow ratio were $0.94{\sim}1.48,\;4.3{\sim}10\;and\;0.8{\sim}3.05$ respectively, Under the condition mentioned above, result of $H_2O/C_3H_8$ flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O/C_3H_8$ flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$ and the ratio of hydrogen to carbon monoxide($H_2/CO$) were $3.89{\sim}4.86$.

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

Hydrogel Synthesis using Glycosyl Methacrylate and Acrylate: 1. A Study on Chemo-Enzymatic Synthesis of Sorbitan Acrylate (배당화 메타크릴레이트와 아크릴에리트를 이용한 하이드로겔의 합성: I. 솔비탄 아크릴레이트의 화학.효소적 합성에 관한 연구)

  • 박돈희;임근길;정귀택;변기영;김인흥;이광연;김해성
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.222-228
    • /
    • 2003
  • This study was performed to research a chemo-enzymatic synthesis of sorbitan acrylate. It w as firstly to determine the optimum conditions for D-sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. It was secondly to find the optimum conditions for sorbitan acrylate synthesis using immobilized lipase Novozym 435 in t-butanol from its materials. The maximum yield of 1,4-sorbitan synthesis were obtained approximately 90% (w/w) at 13$0^{\circ}C$ and 200 mmHg vacuum pressure with 1% (w/w) p-TSA after 150 min reactin time on our experimental system. The product from optimum condition was less color than those obtained at higher temperatures and minimized byproduct and unreacted D-sorbitol. Sorbitan acrylate was synthesized to around 63.5% conversion of 1,4-sorbitan. The experimental optimum condition was found at 5$0^{\circ}C$, atmospheric pressure, 3% (w/v) Novozym 435, 50 g/L 1,4-sorbitan of initial reactant concentration, and 1:3 molar ratio of 1,4-sorbitan to acrylic acid.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production (에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석)

  • Kim, Kyoung-Suk;Park, Chan-Hyun;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.243-247
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

A Study on Developing An Experimental Model to Solve for Optimal Forest-Level Timber Harvesting Schedules Using Linear Programming (대단지(大團地) 산림(山林)의 목재생산계획(木材生産計劃) 분석(分析)을 위한 선형계획(線型計劃) 실험전산모델에 관한 연구(硏究))

  • Chung, Joo Sang;Park, Eun Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.3
    • /
    • pp.292-304
    • /
    • 1993
  • This research developed a forest-level harvest scheduling model using linear programming (LP). The formulations of the LP model include timber production schemes with constraints of nondecling yield forest conversion strategies, the minimum timber supply, levels and the maximum cut acrages. The model is able to generate both Model I and Model II types of input matrix in MPS format. In this paper, use of LP in building the framework of the strategic forest planning model was justified by comparing the algorithmic characteristics of LP with those of Gentan probability and binary search approaches through literature reviews. In order to demonstrate the field applicability of the model proposed. (1) the harvest scheduling problem for about 11,000-hectare case study area (Mt. Baekun area in Southern Experimental Forest of Seoul National University) was formulated and soloed and (2) the effects of the change in task regulatory timber production constraints or. optimal harvesting schedules here investigated.

  • PDF

Economic Feasibility of Hill Land Development (산지개발(山地開發)의 경제성)

  • Kim, Dong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.283-295
    • /
    • 1979
  • A new Farmland Expansion and Development Promotion Law was enacted in 1975. This law authorizes the Government to undertake development within a declared "reclamation area", wherever the land owners are unable to do so. In order to give additional impetus to conversion of waste hilly land into productive farmland, these hilly land development projects were conducted as large scale scheme which include soil fertility improvements such as the application of lime and phosphate. Farmland Expansion and Development Promotion Corps has attempted to undertake annual farm surveys in order to obtain some information about hilly land agriculture and farming operations within the reclamation project areas since 1976. As survey data accumulates, more and more clear picture of hilly land farming come to appear and enable us to conduct in-depth study. Effects of such upland reclamation include converting of previously unproductive slopeland into cultivable farmland for lucrative and commercial farming or food production. Furthermore, idle or marginal resources such as farm labor, equipment and compost would be fully employed. Socio-economic effects would include increases in land value and attitude change of farmers. On the other hand the preservation of natural environments might be damaged to the some extend by the projects. As shown in Table 7, the average farm size increased from 3,156 pyeong($3.3m^2$) to 5,562 pyeong, a 76.2% increase. The proportion of small farms with less than I ha dropped from 59.8% to 34.4%, but that of the large farms over 2 ha rose from 13.1% to 32.0% (See Table 8). The survey results indicate that as the farming on reclaimed uplands become time-honored, the acreage devoted for food crop production decreases against the economic crop growing acreage (see Table 6). For example, in the case of uplands reclaimed in 1972, the ratio of food crop acreages decreased from 99.7% in 1972 to 62.5% in 1977, whereas that of economic crop acreages increased from 0.3% in 1972 to 37.5% in 1977. The government used to actively encourage the farmers to carry out food crop production in the reclaimed upland targting toward the realization of self-sufficiency in food grains. It is, however, apparent that the farmers did hardly take the government advises as far as their economic interest were concerned. Yield per 10a. of various crops from the reclaimed uplands by year were surveyed as seen in Table 12. On the average, barley production in the reclaimed areas achieved 83.3% of the average unit yield from the existing upland in its 5 th year. Soybean yields showed a modest increase from 64% in the first year to 95%, in the 5 th year. In contrast, economic crops such as red pepper, totacco and radish achieved their maximum target yields in 3 years from starting to cultivate on the reclaimed farms. In order to test the post economic viability, an economic analysis was performed for each of selected subprojects on the basis of the data obtained through survey. The average actual internal economic rate of return on upland reclamation investments was found to be 20.3% which exceeded other types of projects of land and water development such as tidal land reclamation, irrigation or paddy rearrangement. The actual IRRs of subcategories of upland reclamation projects varied from 17.9% to 21.4% depending upon the kinds of cropping system adopted in each reclaimed areas such as food, economic, fruit or forage crops.

  • PDF