• Title/Summary/Keyword: maximum capacity constraints

Search Result 40, Processing Time 0.023 seconds

School Bus Routing Problem with Mixed-Load and Dynamic Arrivals (혼승 및 시간대별 학생들의 동적유입을 고려한 스쿨버스 경로 문제)

  • Lee, Young-Ki;Jeong, Suk-Jae;Yun, Ho-Young;Kim, Kyung-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.63-75
    • /
    • 2013
  • The School Bus Routing Problem(SBRP) seeks to plan an efficient schedule of a fleet of school buses that must pick up student from various bus stops and deliver them by satisfying various constraints; maximum capacity of the bus, maximum riding time of students, arrival time between a school's time window. By extending the existing SBRP, we consider a case study of SBRP with allowance of mixed-loading and dynamic arrivals reflecting the school bus operation of university in Korea. Our solution procedure is based on constructing the initial solution using sweep algorithm and then improving solution within the framework of the evolutionary approach known as efficient meta-heuristics. By comparing the various scenarios through the constraints relaxation for reflecting the real operational strategies, we assess the merit of our proposed procedure.

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.

Evaluation of the Wind Power Penetration Limit and Wind Energy Penetration in the Mongolian Central Power System

  • Ulam-Orgil, Ch.;Lee, Hye-Won;Kang, Yong-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.852-858
    • /
    • 2012
  • This paper describes evaluation results of the wind power penetration limit (WPPL) and the wind energy penetration (WEP) in the Mongolian central power system (MCPS). A wind power plant (WPP) in a power system possesses an output power limit because the power system must maintain a balance between the generation and consumption of electricity at all times in order to achieve an adequate level of quality. The instantaneous penetration limit (IPL) of wind generation at a load is determined as the minimum of the three technical constraints: the minimum output, the ramp rate capability, and the spinning reserve of the conventional generating units. In this paper, a WPPL is defined as the maximum IPL divided by the peak load. A maximal variation rate (VR) of wind power is a major factor in determining the IPL, WPPL, and WEP. This paper analyzes the effects of the maximal VR of wind power on the WPPL, WEP, and capacity factor (CF) in the MCPS. The results indicate that a small VR can facilitate a large amount of wind energy while maintaining a high CF with increased wind power penetration.

Optimization of Passenger Transportation Problem (승객 수송 문제의 최적화)

  • Park, Jun-Hyuk;Kim, Byung-In;Kim, Seong-Bae;Sahoo, Surya
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this paper, we present the study of a real passenger transportation system. Passenger transportation problem aims to transport passengers from bus stops to their destinations by a fleet of vehicles while satisfying various constraints such as vehicle capacity, maximum allowable riding time in a bus, and time windows at destinations. Our problem also has special issues such as mixed loading, consideration of afternoon problem together with morning problem, and transferring passengers between vehicles. Our solution approach consists of three serial procedures: bus route generation, bus scheduling, and post optimization. Efficient heuristic algorithms were developed and implemented for the procedures. The proposed solution approach has been successfully applied to several real world problem instances and could reduce about 10% to 15% of buses.

Economic Design of Tree Network Using Tabu List Coupled Genetic Algorithms (타부 리스트가 결합된 유전자 알고리즘을 이용한 트리형 네트워크의 경제적 설계)

  • Lee, Seong-Hwan;Lee, Han-Jin;Yum, Chang-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • This paper considers an economic design problem of a tree-based network which is a kind of computer network. This problem can be modeling to be an objective function to minimize installation costs, on the constraints of spanning tree and maximum traffic capacity of sub tree. This problem is known to be NP-hard. To efficiently solve the problem, a tabu list coupled genetic algorithm approach is proposed. Two illustrative examples are used to explain and test the proposed approach. Experimental results show evidence that the proposed approach performs more efficiently for finding a good solution or near optimal solution in comparison with a genetic algorithm approach.

An Explicit Routing Procedure for Traffic Engineering (트래픽 엔지니어링을 위한 명시적 경로 설정 절차)

  • Sung Chang Sup;Yang Woo Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.426-433
    • /
    • 2002
  • This paper deals with an offline routing problem, which can be used as an explicit routing procedure in MPLS(Multiprotocol Label Switching) network, for traffic engineering. This problem is formulated as an MIP(Mixed Integer Programming) with the objective function which is to minimize the sum of the maximum link utilization for load balancing (link utilization) and the routing cost. Constraints arc composed of link capacity restriction and demand requirement that has origin-destination pair, bandwidth requirement and hop restriction. The problem is proved to be NP-hard so that the Lagrangean relaxation method is applied to propose a Lagrangean heuristic. To test the effectiveness & efficiency of the proposed algorithm, computational experiments are performed with numerical instances. The experiment results show that the proposed algorithm solves the problem within a reasonable time.

  • PDF

Analysis of Price-Clearing in the Generation Bidding Competition

  • Chung, Koohyung;Kang, Dongjoo;Kim, Balho H.;Chun, Yeonghan
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.243-253
    • /
    • 2004
  • As deregulation evolves, pricing electricity becomes a major issue in the electric power industry. Participants in the competitive marketplace are able to improve their profits substantially by effectively pricing the electricity. In this paper, game theory is applied to analyze price-clearing in the generation bidding competition with the competition modeled as the non-cooperative and complete information game. The result of this analysis can be useful in understanding spot price-clearing of electricity as well as GENCOs' strategic behavior in the competitive electricity market.

Development of Optimum Design Method for Geothermal Performance based on Energy Simulation (지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발)

  • Moon, Hyeongjin;Kim, Hongkyo;Nam, Yujin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.