• Title/Summary/Keyword: maximum allowable load

Search Result 138, Processing Time 0.03 seconds

Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Clay (지오그리드로 보강된 점성토사의 얕은 기초의 지지력)

  • Shin, Bang Woong;Das, Braja M.;Shin, Eun Chul;Chung, Kee Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1439-1444
    • /
    • 1994
  • Laboratory model test results for the ultimate bearing capacity and allowable bearing capacity at various settlement levels conducted on a strip foundation supported by geogrid-reinforced clay soil have been presented. For mobilization of the maximum possible load-carrying capacity, the optimum width and depth of the reinforcement layers, and the location of the first layer of reinforcement with respect to the bottom of the foundation have been determined.

  • PDF

A Study on the Strength and Stiffness of the Concrete Filled Circular Tube Beam to Column Connections under the Gravity Loads (연직하중을 받는 콘크리트충전 원형강관기둥의 접합부 내력에 관한 연구)

  • Lee, Myung Woo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.611-623
    • /
    • 1997
  • This paper provides the results of an experimental and analytical study performed on the beam to Concrete Filled Circular Steel Column connections with the external stiffener rings under the gravity loads. Specimens are modeled as a 1/4 scale of the beam-columns as gravity loads are applied to a multi-story frame. Important parameters in this study are the width of the external rings, the diameter-thickness ratios of column and whether or not the external rings are welded to the circular column. A total of 20 specimens are tested to clarify the structural behavior of the CFT column connections with the external stiffener rings. The test results are summarized for the yield and maximum strength and stiffness. The existing design equations for the allowable and yield load capacities are referred to verify the structural characteristics for the connections.

  • PDF

An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member (고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

Fundamental Study for the Development of a New Pile under Lateral Load (횡하중에 강한 새로운 말뚝의 개발을 위한 기초 연구)

  • Yun, Yeo-Won;Jo, Ju-Hwan;Kim, Du-Gyun
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.45-60
    • /
    • 1997
  • In this research the behavior of a new type of a single pile under lateral loading and against slope sliding is studied. Especially, the section of a new pile is determined throughout experiments, and the single pile behavior under lateral loading and the effect of improvement in slope stability by using new type of pile (gear-shaped) were studied. As a result, it is known that maximum deflection of gear-shaped pile is far smaller than that of traditional PC circular pile for the same lateral loading. And lateral load of gear-shaped pile at allowable deflection was bigger than that of PC circular pile. From the comparison between two hypes of piles, it can be seen that the degree of improvement of safety factor in slope was higher in gear-shaped pile than that of PC pile under the same condition, and it results in the reduction of the number of stabilizing piles in a slope.

  • PDF

Flexural Behaviors of Precast Prestressed Rectangular and Inverted-tee Concrete Beams for Buildings

  • Yu, Sung-Yong
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Flexural behaviors of the two typical precast beam sections (inverted tee and rectangular) for buildings were investigated and compared. The height of web in the inverted tee beam was generally less than half of beam depth to be adapted to that of the nib in the ends of double-tee where the total building height limited considerably. The inverted-tee beams were designed for a parking live load - 500kgf/$m^2$ and a market - 1,200kgf/$m^2$ from the currently used typical shape of a domestic building site in Korea. The area and bottom dimension of rectangular beams were the same as those of inverted tee beams. These woo beams were also reinforced with a similar strength. following results were obtained from the studies above; 1) the rectangular beam is simpler in production, transportation, and erection, and more economic than the inverted tee beam in the construction test for these two beams with a same dimension and a similar strength, 2) all of the beams considered in the tests were generally failed in values close to those of the strength requirements in ACI Provisions. The ratios of test result to calculated value are averaged to 1.04. One rectangular and one inverted tee beams failed in a value only 2-3% larger than the estimated volue of the Strength Design Methool the results of the Strain Compatibility Method wire slightly more accurate than those of the Strength Design Method, 4) the maximum deflections of all of the beams under the full service loads were less than those of the allowable limit in ACI Code Provisions. The rectangular beams experienced more deflection then inverted tee in the same loading condition and failed with more deflection, and 5) the rectangular and inverted tee beams showed good performances under the condition of service and ultimate loads. However, one inverted tee beams with fm span developed an initial flexural crackings under 88% of the full service load even though they designed to satisfy the ACI tensile stress limit provisions.

  • PDF

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

Failure Probability Assessment of Natural Gas Pipeline under Combined Stresses (복합하중에 의한 천연가스 배관의 파손확률 평가)

  • Baek, Jong-Hyun;Chang, Yun-Chan;Kim, Ik-Jung;Kim, Cheol-Man;Kim, Young-Pyo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The structural reliability assessment can be used to improve the reliability in the asset integrity management of the pipeline by using a geometric variation, mechanical characteristics, load change and operating condition as evaluation factors. When evaluating structural reliability, the failure probability of the natural gas pipe is evaluated by the relationship of the resistance of the pipe material to external loads. The failure probability of the natural gas pipe due to the combined stresses such as the internal pressure, thermal stress and bending stress was evaluated by using COMREL program. When evaluating the failure probability of the natural gas pipe, a buried depth of 1.5 to 30 m, a wheel load of 2.5 to 20 ton, a temperature difference of 45℃, an operating pressure of 6.86MPa, and a soil density of 1.8 kN/㎥ were used. The failure probabilities of the natural gas pipe were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses.

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

An Analytical Study on the Relationship between Factor of Safety and Horizontal Displacement of Soil Nailed Walls (쏘일네일 보강벽체의 수평변위와 안전율과의 관계 분석연구)

  • Kim, Hongtaek;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • Soil nailing method was often designed by the slope stability analysis based on limit equilibrium. However, in the case of shorten length of nails, although the calculated factor of safety is within the design factor of safety, the horizontal displacement of soil nailed walls occurred above the allowable limit. In this study, relationship between the load and factor of safety, and relationship between the load and displacement ratio based on the test results were analysed. From the analysed results, the relationship between factor of safety and displacement ratio was estimated. For the mobilized horizontal displacement of the walls within the serviceability limit corresponding to the displacement of less than 0.3% displacement ratio, the calculated factor of safety by limit equilibrium analysis had to satisfy above 1.35. Also, although the minimum factor of safety is estimated above 1.35, the maximum horizontal displacement is often mobilized above 0.3% of excavation height. Therefore, it is necessary to perform the numerical analysis of soil nailed walls in the case of low shear strength or high excavation.