DOI QR코드

DOI QR Code

An Analytical Study on the Relationship between Factor of Safety and Horizontal Displacement of Soil Nailed Walls

쏘일네일 보강벽체의 수평변위와 안전율과의 관계 분석연구

  • 김홍택 (홍익대학교 토목공학과) ;
  • 이인 (홍익대학교 토목공학과)
  • Received : 2010.11.15
  • Accepted : 2010.12.23
  • Published : 2011.02.01

Abstract

Soil nailing method was often designed by the slope stability analysis based on limit equilibrium. However, in the case of shorten length of nails, although the calculated factor of safety is within the design factor of safety, the horizontal displacement of soil nailed walls occurred above the allowable limit. In this study, relationship between the load and factor of safety, and relationship between the load and displacement ratio based on the test results were analysed. From the analysed results, the relationship between factor of safety and displacement ratio was estimated. For the mobilized horizontal displacement of the walls within the serviceability limit corresponding to the displacement of less than 0.3% displacement ratio, the calculated factor of safety by limit equilibrium analysis had to satisfy above 1.35. Also, although the minimum factor of safety is estimated above 1.35, the maximum horizontal displacement is often mobilized above 0.3% of excavation height. Therefore, it is necessary to perform the numerical analysis of soil nailed walls in the case of low shear strength or high excavation.

쏘일네일 공법은 일반적으로 한계평형해석법을 토대로 검토한 사면안정해석결과를 이용하여 설계기준안전율 이상을 만족하면 안정한 것으로 판단하여 설계하고 있다. 그러나 쏘일네일의 길이가 짧은 경우 설계기준안전율을 만족하고도 발생변위가 과다하여 사용상에 문제가 발생하는 경우가 있다. 본 연구는 대형파괴재하시험결과에 의한 재하하중-안전율 및 재하하중-발생변위비와의 관계를 분석하여 쏘일네일 보강벽체의 안전율-발생변위비와의 상관관계를 분석하였으며, 분석결과 쏘일네일 보강벽체의 사용한계상태에 해당하는 발생 변위비 0.3% 이내를 만족하기 위해서는 한계평형해석에 의한 안전율이 최소 1.35 이상을 확보하여야 할 것으로 평가되었다. 또한 한계평형해석결과 최소 안전율 1.35 이상을 만족하여도 지반의 전단강도가 작거나 벽체높이가 높을 경우 사용한계상태에 해당하는 발생 변위비 0.3% 이내를 만족하지 못하는 경우가 있어 수치해석을 통한 발생변위 검토가 필요할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 홍익대학교

References

  1. 강인규, 권영호, 박신영, 이승현, 김홍택(2008), 대형파괴재하 시험을 통한 쏘일네일 벽체의 거동분석, 한국지반환경공학회 논문집, Vol. 9, No. 3, pp. 51-60.
  2. Bruce, D. A. and Jewell, R. A.(1987), Soil Nailing: Application and Practice - part 2, Ground Engineering, Jan., pp. 2-38.
  3. Elias, V. and Juran, I.(1991), Soil Nailing for Stabilization of Highway Slopes and Excavations, United States Federal Highway Administration, Publication No. FHWA-RD-89-193, June. pp. 11-25.
  4. FHWA(2003), Geotechnical Engineering Circular No.7 - Soil Nail Walls, Publication No. FHWA-IF-03-017, p. 147.
  5. Juran, I., Baudrand, G., Farrag, K. and Elias, V.(1990), Kinematical Limit Analysis for Design of Soil-Nailed Structures, Journal of the Geotechnical Engineering, ASCE, Vol. 116, No. 1, pp. 54-73. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(54)
  6. Schlosser, F., Gigan, J. P. and Plumelle, C.(1991), Recommendations Clouterre ; Soil Nailing Recommendations, French National Rearch Project Report, Ponts et Chaussees.
  7. Shen, C. K., Bang, S. and Herrmann, L. R.(1981), Ground Movement Analysis of an Earth Support System, Journal of the Geotechnical Engineering, ASCE, Vol. 107, No. GT 12, pp. 1609-1624.
  8. Stocker, M. F., Korber, G. W., Gässler, G. and Gudehus, G. (1979), Soil Nailing, C. R. Coll. Int. Reinforcement Des Sois. Paris, pp. 469-474.