• Title/Summary/Keyword: maximum absorption

Search Result 1,131, Processing Time 0.027 seconds

Determination of p-Anisic Acid and Methylparaben by Using High Performance Liquid Chromatography (HPLC를 이용한 p-아니식애씨드와 메칠파라벤의 분리 분석법 개발)

  • Kim, Il Hyun;Ryu, De Hun;Kim, Young Soo;Jung, Eun Sun;Park, Deok Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2014
  • In this study, we developed a HPLC method for the separation and analysis of methylparaben and p-anisic acid, which are commonly used as a synthetic preservative and natural preservative, respectively. Methylparaben and p-anisic acid have same molecular weight (152.15 g/mol), similar structure and same maximum absorption wavelength (250 nm), thus they showed same retention time (RT) value (13.3 min) in HPLC experiment. We observed that two substances are separated on C18 column after methylparaben was derivatized selectively through the acetylation reaction. Instead, RT of the acetylated methylparaben was moved to 23.9 min from 13.3 min. The average retention time was $23.9{\pm}0.1min$ and peak area values was $5042882{\pm}4778$. In addition it showed a high linearity in the calibration curve with a correlation coefficient (R2) of 0.9999658. Detection and quantitation limits were $1.47{\mu}g/mL$ and $4.44{\mu}g/mL$, respectively. In conclusion, the developed method can be useful for separation and analysis of preservatives with similar structure in cosmetic fields.

Luminescence characterization of $EU^{3+}$ and $Bi^{3+}$ co-doped in ${Y_2}{SiO_5}$ red emitting phosphor by solid state reaction method (고상 반응법으로 합성한 ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ 적색 형광체의 발광 특성)

  • Moon, J.W.;Song, Y.H.;Park, W.J.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.15-18
    • /
    • 2009
  • To enhance near UV-visible absorption region and to applied phosphor convert-white LEOs (PC-WLEDs), a red phosphor composed of ${Y_2}{SiO_5}:\;EU^{3+}$, $Bi^{3+}$ compounds was prepared by the conventional solid-state reaction. The photoluminescence (PL) shown that samples were excited by near UV light 395 nm for measurement of PL spectra. Emission spectra of samples have shown red emissions at 612 nm ($^5D_0{\to}^7F_2$). The enhanced near $UV{\sim}$ visible excitation spectrum with a broad band centered at 258 nm and 282 nm originated in the transitions toward the charge transfer state (CTS) due to the $Eu^{3+}-Bi^{3+}-O^{2-}$ interaction. The other excitation band at $350\;nm{\sim}480\;nm$, corresponding to the transitions $^7F_0{\to}^5L_9$ (364 nm), $^7F_0{\to}^5G_3$ (381 nm), $^7F_0{\to}^5L_6$ (395 nm), $^7F_0{\to}^5D_3$, (415 nm) and $^7F_0{\to}^5D_2$ (466 nm), occurred due to enhanced the f-f transition increasing $Bi^{3+}$ and $Eu^{3+}$ ions. The PL intensity increased with increased as concentration of $Bi^{3+}$ and the emission intensity becomes with a maximum at 0.125 mol.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Surface Modification of Nafion by Layer-by-Layer Self-Assembled Films of Polyaniline and Sulfonated Poly(ether sulfone) for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 나피온 막의 폴리아닐린/Sulfonated Poly(ether sulfone) 다층 자기조립 박막에 의한 표면 개질)

  • Ok, Jeong-Rim;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2008
  • In this study, Nafion membrane was modified to prevent methanol crossover by layer-by-layer self assembly using polyaniline (PANi) as a polycation and sulfonated poly(ether sulfone) (SPES) as a polyanion onto the Nafion surface. Since PANi and SPES possess thermal and chemical stability and rigid backbone, their layer-by-layer self-assembled films on the Nafion are expected to reduce methanol permeability and to increase mechanical stability. UV-Vis absorption spectroscopy verified a linear build-up of the multilayers of PANi and SPES. We found that the thickness per bilayer was about 10 nm by TEM measurement. Although modified Nafion membrane exhibited 15% decrease of proton conductivity, it reduceded 67% of methanol permeability compared to that of the pristine Nafion membrane, resulting in 2.5 times larger selectivity. At the performance test of the fuel cell using 5M methanol as a fuel, the modified Nafion membrane showed 2.4 times higher maximum power density at $30^{\circ}C$ and 1.4 times larger at $60^{\circ}C$ than the pristine Nafion.

Isolation and Characterization of a β-galactosidase Producing Thermophilic Bacterium (β-galactosidase를 생성하는 고온성(高溫性) 세균(細菌)의 생리적(生理的) 특성(特性)에 관한 연구(硏究))

  • Lee, Jong Soo;Kim, Chan Jo
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.377-386
    • /
    • 1982
  • This experiment was carried out to elucidate the thermotolerant properties of a thermophilic bacterium which was isolated from soils of the hot springs area and selected for the ${\beta}$-galactosidase production. This bacterium was identified as a strain belong to the genus Thermus. Biochemical and physiological characteristics of this strain were studied, including the investigation of the fatty acid composition of its neutral fats. The results obtained were summarized as follows. 1. Optimal temperature and pH for growth of this strain were $65^{\circ}C$ and pH 6.5 respectively, and it was found to be an absolute thermophilic bacterium which could not grow at the temperature below $43^{\circ}C$. 2. No growth was obtained in the medium which contained more than 1.0% of sodium chloride. 3. The tolerable concentration of antibiotics were 10mg of penicillin G per ml of medium and 0.5mg of chloramphenicol per ml respectively. 4. This strain had auxotrophilic requirements for calcium-pantothenate and pyridoxin-HCl as an essential factor and for niacin as a stimulative factor. 5. Yellow pigment was released into the liquid culture of this strain, which showed maximum absorption at 420 nm. 6. Fatty acid composition of neutral fats of the strain was palmitic acid, 60.20%; lauric acid, 11.80%; myristic acid, 7.56%; behenic acid, 4.25%; capric acid, 1.77%; stearic acid, 2.13%; arachidic acid, 1.53%; and others unidentified, 10.7%.

  • PDF

Effects of Roasting Temperature on Phycochemical Properties of Job's tears (Coix lachryma jobi L. var ma-yeun) Powder and Extracts (볶음온도에 따른 율무 분말과 침출액의 이화학적 특성)

  • Chung Hun-Sik;Kim Jong-Kuk;Youn Kwang-Sup
    • Food Science and Preservation
    • /
    • v.13 no.4
    • /
    • pp.477-482
    • /
    • 2006
  • This study was carried out to evaluate the effect of the masting temperature on the phycochemical properties of the roasted Job's tears. Raw seeds were roasted for 20 min at 150, 170, 190, 210 or $230^{\circ}C$, were milled and extracted with hot water. The L and a values of the powder were sharply decreased or increased at the masting temperature of above $190^{\circ}C$, respectively. The b value was maximum at $190^{\circ}C$. Water absorption capacity of the powder and browning index of the extract were proportionally increasing with increasing the masting temperature. The pH of the extracts was decreased at the masting temperature of above $190^{\circ}C$. Total sugar content of the extract tended to be decreased until $170^{\circ}C$ and then be increased from $190^{\circ}C$. Content of phenolic compound of the extract was increased at the masting temperature of above $210^{\circ}C$. At the sensory evaluation of the extract, aroma and taste of samples masted at $170^{\circ}C$ and above $190^{\circ}C$, respectively were higher than those masted at the others. Overall acceptability of the extract was highest at $190^{\circ}C$.

Characteristics of Cucumber mosaic virus-VCH Causing Vein Chlorosis on Red Pepper in Korea (고추에 엽맥퇴록병을 일으키는 오이 모자이크 바이러스(CMV-VCH)의 특징)

  • Cho, Jeom-Deog;Lee, Sin-Ho;Kim, Jeong-Soo;Choi, Gug-Seoun;Kim, Hyun-Ran;Chung, Bong-Nam;Ryu, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.226-230
    • /
    • 2006
  • Cucumber mosaic virus(CMV) was occurred on red pepper showing vein chlorosis or vein necrosis with the incidence rate of 52% from 62 specimens collected in natural fields. Among 32 samples infected with CMV, the specimens of 22 red pepper leaves showing vein chlorosis were infected singly with CMV-VCH. CMV-VCH induced vein chlorosis on the inoculated leaves, and vein banding and vein necrosis on the upper leaves of Nicotiana glutinosa, and then killed after showing bud necrosis. The typical symptoms of vein banding, malformation and blister were produced on the upper leaves of Nicotiana benthamiana and N. tabacum 'Ky-57' without symptoms on the inoculated leaves. The commercial cultivars of 'Bugang', 'Manitta' and 'Gwariput' were shown the typical symptom of vein chlorosis by the mechanical inoculation of CMV-VCH. CMV-VCH was detected specifically by RT-PCR. Virus particles of CMV-VCH were isometric shape having 30 nm diameter. Ultraviolet absorption of purified CMV-VCH was maximum at 260 nm and minimum at 242 nm. The ratio of A260/A280 was 1.71. CMV-VCH had the single nucleo-protein having the molecular weight of 24.5 kDa.

Effects of Nitrogen Sources on Chlorophyll, and Oxidases in Soybean Leaves different in Phosphorus Sensitivity (인산감수성(燐酸感受性)이 다른 대두엽(大豆葉)의 엽록소(葉綠素) 및 산화효소(酸化酵素)에 대(對)한 질소원(窒素源)의 영향(影響))

  • Park, Hoon;Stutte, Charles A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.3
    • /
    • pp.185-191
    • /
    • 1973
  • Effects of nitrogen sources on chlorophyll, activity of some oxidases in soybean leaves were investigated in relation to phosphorus sensitivity. Ammonium and urea culture accelerated leaf senescence more in phosphorus sensitive cultivars. The leaf senescence patterns affected by nitrogen sources were clearly indicated by intact leaf absorbance. Absorption maximum (670nm in methanol extraction or 685nm in intact leaf), was not changed by nitrogen source in the same method. According to leaf senesence pattern general physiological sensitivity pattern was discussed. IAA-oxidase activity was higher in the phosphorus tolerant cultivars and nitrate treatment than in the sensitive cultivars and ammonium treatment. Glycolate oxidase activity was higher in the sensitive cultivars and nitrate treatment. Polyphenol oxidase activity was higher in the tolerant cultivars and urea treatment. It is concluded that the excess ammonium, to which excess phosphorus is highly similar in physiological effect, disturbs the photosynthetic system by inhibition of ATP generation (photo-and oxidative phosphorylation).

  • PDF

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Studies on the Anti Oralmicrobial Activity and Selected Functional Component of Small Red Bean Extract (팥 추출물의 구강세균에 대한 항균성 및 일부 기능성 성분에 대한 연구)

  • Kang, So-Jin;Han, Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.28 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • This purpose of this study was to develop a tea with small red bean which have been known to have effect regarding anti-obesity, fatigue recovery, edema recovery, blood circulation, etc. In order to provide baseline data for small red bean tea we investigated the general components, antioxidative effect and proanthocyanidin analysis in small red beans[Phaseolus angularis W.F. Wight.]. Physicochemical analysis(pH, sugar content, salinity, turbidity), color, anti oralmicrobial activity, content of saponin and sensory test of small red bean with different boiling time in 8 minutes(SR1), 16 minutes(SR2), 24 minutes(SR3), 32 minutes(SR4), 40 minutes(SR5) was also measured. It was shown that the crude fat, carbohydrate, moisture, crude protein, crude ash content of small red bean were 1.0%, 63.9%, 12.8%, 18.7%, 3.6%. DPPH free radical scavenging activity, the total phenolic compounds content and flavonoid content increased significantly (p<0.001). The results of analyzed proanthocyanidin was distinguished by characteristic UV-visible spectra with absorption maximum at 320 nm($t_R$ 7.589 min). As the boiling time(8 minutes:SR1, 16 minutes:SR2, 24 minutes:SR3, 32 minutes:SR4, 40 minutes:SR5) of small red beans increaseds, the pH significantly decreased(p<0.001). The sugar content, salinity and turbidity significantly increased(p<0.001). Moreover, Hunter L, a and b values, crude saponin also increased(p<0.001). The results of analyzed activity against oral bacteria, S. mutans, S. sobrinus, P. intermedia and P. gingivalis showed a higher antibacterial activities than E. coli and S. aureus. MIC was measured that S. mutans, S. sobrinus, P. intermedia and P. gingivalis showed a lower MICs than E. coli and S. aureus. The results regarding sensory test measures, In case of color, refreshing taste and overall quality, SR3 had the highest preference overall among tested samples. In cases conceming odor and taste, SR5 had the highest preference and with regards to sweetness and saltyness, SR4 had the highest preference.