• Title/Summary/Keyword: maximal condition

Search Result 312, Processing Time 0.02 seconds

Influence of Koji Molds on the Production of Aflatoxins by Aspergillus flavus in Rice (Aspergillus flavus에 의한 쌀에서의 Aflatoxin 생성에 미치는 고오지 곰팡이의 영향)

  • Lee, Chul-Jun;Kim, Young-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.721-725
    • /
    • 1989
  • Aflatoxin accumulation by Aspergillus flavus in rice was inhibited by A. kawachii and A. Shirousamii so that the rate of toxin accumulation and the maximum concentration of accumulated aflatoxins were considerablly reduced, although the initiation of aflatoxin accumulation was not affected. The maximal accumulated aflatoxin $B_1$ in rice by A. flavus at $28^{\circ}C$ and 85% RH was $40{\mu}g/50g$ rice after 35 days. Under the same condition but the additional inoculation of A. kawachii, $25{\mu}g\;of\;aflatoxin\;B_1$ was accumulated maximally in 50g rice after 45 days. When A. shirousamii was inoculated simultaneously with A. flavus on rice, however, only trace levels of aflatoxins were detected throughout 60 days of storage. Aflatoxins added to rice were reduced by 97% with A. kawachii and by 98% with A. shirousamii after 7 days during rife koji preparation. They were also reduced after 48 Hours of incubation by 30-67%, with A. kawachii koji and by 16-75% with A. shirousamii koji.

  • PDF

Effects of nitrogen and organic carbon sources on growth and lipid production of Chlorella sp. KR-1 in flask cultures (플라스크 배양에서 Chlorella sp. KR-1의 균체 성장 및 지질 생산에 대한 질소원 및 유기탄소원의 영향)

  • Lee, Ja-Youn;Seo, Kyoung Ae;Oh, You-Kwan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.110-117
    • /
    • 2014
  • Recently microalgae have been proposed as a promising biodiesel feedstock, owing to their higher lipid productivity and non-arable land based cultivation system. Biomass and lipid productivities of microalgae are largely affected by various environmental and nutritional factors. In this study, the effects of nitrogen (nitrate and ammonium) and organic carbon (glucose and glycerol) sources on the cell growth and lipid production of Chlorella sp. KR-1 were examined in flask cultures. Under autotrophic culture conditions for 15 days, overall cell growth and lipid (fatty acid methyl ester, FAME) production with nitrate were better than those of ammonium, resulting in 1.06 g cell/L and 333 mg FAME/L, respectively. Maximal intracellular lipid contents (348 - 352 mg FAME/g cell) were observed at low concentrations of 1 mM for both nitrate and ammonium. In the supply of light, addition of glucose in the range of 1 - 20 g/L showed higher cell densities than the autotrophic cell growth condition. Higher lipid accumulation of 375 mg FAME/g cell could achieved at 5 g glucose/L albeit of relatively short incubation of 7 days. With glycerol, intracellular lipid contents were ~1.9 times lower than glucose cases although similar cell growths were observed for both carbon sources.

The Effect of Oxygen Transfer Rate on the Nebramycin Factor 5' Activity and Component Ratio in Streptoalloteichus hindustanus Fermentation. (Streptoalloteichus hindustanus 발효시 Nebramycin Factor 5' 역가 및 구성비율에 대한 산소전달속도의 영향)

  • 김정근;이병규;노용택
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.395-399
    • /
    • 2003
  • Nebramycin is a complex of aminocyclitol compounds that is produced by aerobic culture in fermentation process. The major antibiotic factors produced by Streptoalloteichus hindustanus are nebramycin factor 2, 4, 5'and kanamycin A. A mutant was selected, producing nebramycin factor 5' activity 16.4 times higher than parent strain by microbiological assay using Pseudomonas aeruginosa CH-U34AF. The component ratio of nebramycin factor 5' was dramatically increased from 34% to 70% by the optimization of fermentation condition. It was found that the component ratio of nebramycin factor 5' in fermentation was especially affected by the oxygen transfer rate. Optimum oxygen transfer rate for maximal nebramycin factor 5' productivity and ratio during S. hindustanus fermentation was elucidated to $0.50 mMO_2$/min.

$Ca^{2+}-Substitutional$ Roles of Strontium for the Contractile Processes in the Rabbit Renal Artery (가토 신동맥 평활근에서 Strontium의 Calcium 대행역할)

  • Chang, Yun-Cheol;Jeon, Byeong-Hwa;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.281-291
    • /
    • 1990
  • The $Ca^{2+}-substitutional$ roles of strontium for the contractile processes were investigated in the rabbit renal artery. The contractions induced by either norepinephrine or high $K^+$ in the condition which intra- and extracellular $Ca^{2+}$ were replaced by $Sr^{2+}$, i.e. $Sr^{2+}-mediated$ contractions, were dose-dependent. And then the maximal amplitude of contraction, as compared with $Ca^{2+}-mediated$ contraction, was about 50% in norepinephrine and about 70% in high $K^+$. The $Sr^{2+}-mediated$ contractions were independent in the contraction by norepinephrine $(10^{-5}M)$ but dependent in those by high $K^+(100\;mM)$ on the extracellular $Sr^{2+}$ concentration. Also $Sr^{2+}-mediated$ contractions induced by norepinephrine were observed in the $Sr^{2+}-free$ Tyrode's solution. The $Sr^{2+}-mediated$ contractions induced by either norepinephrine or high $K^+$ were suppressed by verapamil, a $Ca^{2+}-channel$ blocker. By extracellular addition of $Sr^{2+}$, the $Ca^{2+}-mediated$ contractions induced by norepinephrine $(10^{-5}M)$ or 40 mM $K^+$ were inhibited but those by high $K^+(100\;mM)$ were increased. And the $Sr^{2+}-mediated$ contractions were increased by extracellular addition of $Ca^{2+}$ but did not reach the level of $Ca^{2+}-mediated$ contraction. Therfore it is suggested that in the vascular smooth muscle of rabbit renal artery $Sr^{2+}$ could enter the smooth muscle cells easily through the potential-operated calcium channel (POC) but not easily through the receptor-operated calcium channel (ROG), and $Sr^{2+}$ might be stored in the intracellular $Ca^{2+}-binding$ site and released by NE and induced the contraction by a way of activating directly the contractile apparatus.

  • PDF

Enhanced Carboxymethylcellulase Production by a Newly Isolated Marine Bacterium, Cellulophaga lytica LBH-14, Using Rice Bran

  • Gao, Wa;Lee, Eun-Jung;Lee, Sang-Un;Li, Jianhong;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1412-1422
    • /
    • 2012
  • The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}7H_2O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were $35^{\circ}C$ and $25^{\circ}C$, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

Evaluation of Plantarflexion Torque of the Ankle-Foot Orthosis Using the Artificial Pneumatic Muscle (인공공압근육 엑츄에이터를 이용한 족관절 보조기의 족저굴곡 토크 평가)

  • Kim, Kyung;Kwon, Tae-Kyu;Kang, Seung-Rok;Piao, Yong-Jun;Jeong, Gu-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.82-89
    • /
    • 2010
  • Ankle-foot orthosis with an artificial pneumatic muscle which is intended for the assistance of plantarfelxion torque was developed. In this study, power pattern of the device in the various pneumatics and the effectiveness of the system were investigated. The pneumatic power was provided by ankle-foot orthosis controlled by user‘s physiological signal, that is, muscular stiffness in soleus muscle. This pneumatic power can assist plantarflexion torque of ankle joint. The subjects performed maximal voluntary isokinetic plantarflexion motion on a biodexdynamometer in different pneumatics, and they completed three conditions: 1) without wearing the orthosis, 2) wearing the orthosis with artificial muscles turned off, 3) wearing the orthosis activated under muscular stiffness control. Through these experiments, we confirmed the effectiveness of the orthosis and muscular stiffness control using the analyzing isokinetic plantarflexion torque. The experimental results showed that isokinetic torques of plantarflexion motion of the ankle joints gradually increased in incremental pneumatic. The effectiveness of the orthosis was -7.26% and the effectiveness of the muscular stiffness control was 17.83% in normalized isokinetic plantarflexion torque. Subjects generated the less isokinetic torques of the ankle joints in wearing the orthosis with artificial muscles turned off, but isokinetic torques were appropriately reinforced in condition of wearing the orthosis activated under muscular stiffness control(17.83%) compared to wearing the orthosis(-7.26%). Therefore, we respect that developed powered orthosis is applied in the elderly that has weak muscular power as the rehabilitation equipment.

Gas Phase Thernal cis-trans Isomerization Reaction of 1-Bromopropene

  • Huh, D- Sung;Um, Jae-Young;Yun, Sun-Jin;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.391-395
    • /
    • 1990
  • The kinetics of thermnal cis-trans isomerization reaction of 1-bromopropene(1-BP) was studied at temperatures from 620.8 to 753.15 K over the pressure range 0.17-50.3 Torr. Both the inhibition effect by cyclohexene or propene and the catalytic effect by HBr showed a radical process as the main mechanism of the isomerization. In the suppression of the radical process by the inhibitors, the molecular process also contributed to overall reaction rate. The reactions demonstrated the first order kinetics under both uninhibited and inhibited conditions and could be represented by the expressions (R = 1.987 cal/mol/K) $k_{un}/s^{-1} = (3.45{\pm}1.50){\times}10^{11}$exp$[(- 48100{\pm}2000)/RT]\;k_{ink}/s^{-1} = (2.98{\pm}1.40){\times}10^{12}$exp$[(- 55800{\pm}1800)/RT]$> where $k_{un}$ is the observed rate constant of cis-1-bromopropene(1-B$P_c$) to trans-1-bromopropene(1-B$P_t$) under uninhibited condition at initial pressure of 50 Torr and $k_{ink}$ is the rate constant under maximal inhibition by cyclohexene. The ratio of rate constants for bromine atom elimination from the allylic hydrogen of reactant(1-BP) and from the inhibitors, propene and cyclohexene, were measured from the observed rates of the uninhibited and inhibited reactions. The inhibition efficiencies of cyclohexene and propene were compared kinetically from the rate constants and shown to give good agreement with the previous results reported from other alkyl bromide pyrolyses.

The Effects of Vibration Frequency and Amplitude on Serratus Anterior Muscle Activation During Knee Push-up Plus Exercise in Individuals with Scapular Winging (어깨뼈 익상에 대한 푸쉬업플러스 시 부가적 진동의 주파수와 진폭이 어깨안정근 근활성도에 미치는 영향)

  • Park, Won-Young;Koo, Hyun-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2018
  • PURPOSE: This study was conducted to investigate the effects of vibration frequency and amplitude on scapular winging during the knee push-up plus exercise. METHODS: A total of 26 female subjects with scapular winging were evaluated while performing the knee push-up plus exercise with no vibration, low-frequency/low-amplitude (5 Hz/3 mm) vibration, low-frequency/high-amplitude (5 Hz/9 mm) vibration, high-frequency/low-amplitude (15 Hz/3 mm) vibration, and high-frequency/high-amplitude (15 Hz/9 mm) vibration. The surface EMG of the serratus anterior (SA) muscle was compared between the vibration frequency and amplitude. The EMG amplitude was normalized using the maximal voluntary isometric contraction (MVIC). The statistical significance of the results was evaluated using one-way ANOVA. RESULTS: The SA muscle EMG values increased at low-frequency/low-amplitude vibration and at low-frequency/high-amplitude vibration compared to no vibration. Furthermore, the same values increased at high-frequency/low-amplitude vibration and high-frequency/high-amplitude vibration compared to no vibration. In general, a higher vibration frequency and amplitude was associated with higher EMG values of the SA muscle, with particularly greater increases observed during high-frequency/high-amplitude vibration. There was also a significant difference between each condition with a high-frequency/high-amplitude vibration (p<.05). CONCLUSION: This study suggests that there were remarkable clinical effect of the knee push-up plus exercise with vibration, which enhanced the SA muscle activation in persons with scapular winging. Furthermore, applying a higher vibration frequency and amplitude more effectively increased for increasing SA muscle activation.

Improving the Safety of Mesenchymal Stem Cell-Based Ex Vivo Therapy Using Herpes Simplex Virus Thymidine Kinase

  • Bashyal, Narayan;Lee, Tae-Young;Chang, Da-Young;Jung, Jin-Hwa;Kim, Min Gyeong;Acharya, Rakshya;Kim, Sung-Soo;Oh, Il-Hoan;Suh-Kim, Haeyoung
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.479-494
    • /
    • 2022
  • Human mesenchymal stem cells (MSCs) are multipotent stem cells that have been intensively studied as therapeutic tools for a variety of disorders. To enhance the efficacy of MSCs, therapeutic genes are introduced using retroviral and lentiviral vectors. However, serious adverse events (SAEs) such as tumorigenesis can be induced by insertional mutagenesis. We generated lentiviral vectors encoding the wild-type herpes simplex virus thymidine kinase (HSV-TK) gene and a gene containing a point mutation that results in an alanine to histidine substitution at residue 168 (TK(A168H)) and transduced expression in MSCs (MSC-TK and MSC-TK(A168H)). Transduction of lentiviral vectors encoding the TK(A168H) mutant did not alter the proliferation capacity, mesodermal differentiation potential, or surface antigenicity of MSCs. The MSC-TK(A168H) cells were genetically stable, as shown by karyotyping. MSC-TK(A168H) responded to ganciclovir (GCV) with an half maximal inhibitory concentration (IC50) value 10-fold less than that of MSC-TK. Because MSC-TK(A168H) cells were found to be non-tumorigenic, a U87-TK(A168H) subcutaneous tumor was used as a SAE-like condition and we evaluated the effect of valganciclovir (vGCV), an oral prodrug for GCV. U87-TK(A168H) tumors were more efficiently ablated by 200 mg/kg vGCV than U87-TK tumors. These results indicate that MSC-TK(A168H) cells appear to be pre-clinically safe for therapeutic use. We propose that genetic modification with HSV-TK(A168H) makes allogeneic MSC-based ex vivo therapy safer by eliminating transplanted cells during SAEs such as uncontrolled cell proliferation.

Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model

  • Sharp, Matthew;Wilson, Jacob;Stefan, Matthew;Gheith, Raad;Lowery, Ryan;Ottinger, Charlie;Reber, Dallen;Orhan, Cemal;Sahin, Nurhan;Tuzcu, Mehmet;Durkee, Shane;Saiyed, Zainulabedin;Sahin, Kazim
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.42-55
    • /
    • 2021
  • [Purpose] This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. [Methods] In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. [Results] In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. [Conclusion] Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.