DOI QR코드

DOI QR Code

Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model

  • Sharp, Matthew (Research Division, Applied Science and Performance Institute) ;
  • Wilson, Jacob (Research Division, Applied Science and Performance Institute) ;
  • Stefan, Matthew (Research Division, Applied Science and Performance Institute) ;
  • Gheith, Raad (Research Division, Applied Science and Performance Institute) ;
  • Lowery, Ryan (Research Division, Applied Science and Performance Institute) ;
  • Ottinger, Charlie (Research Division, Applied Science and Performance Institute) ;
  • Reber, Dallen (Research Division, Applied Science and Performance Institute) ;
  • Orhan, Cemal (Department of Animal Nutrition, Firat University) ;
  • Sahin, Nurhan (Department of Animal Nutrition, Firat University) ;
  • Tuzcu, Mehmet (Department of Biology, Firat University) ;
  • Durkee, Shane (Lonza Consumer Health Inc.) ;
  • Saiyed, Zainulabedin (Lonza Consumer Health Inc.) ;
  • Sahin, Kazim (Department of Animal Nutrition, Firat University)
  • Received : 2021.01.29
  • Accepted : 2021.03.30
  • Published : 2021.03.31

Abstract

[Purpose] This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. [Methods] In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. [Results] In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. [Conclusion] Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.

Keywords

Acknowledgement

This study was financially supported by Lonza Consumer Health Inc. S.D. and Z.S. were employed by Lonza Consumer Health Inc. Neither of these authors were involved in data collection, data curation, or formal analysis. All other authors have no competing interests to declare.

References

  1. Zaldivar F, Wang-Rodriguez J, Nemet D, Schwindt C, Galassetti P, Mills PJ et al. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J Appl Physiol. 2006;100:1124-33. https://doi.org/10.1152/japplphysiol.00562.2005
  2. MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC. Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 2001;84:180-6. https://doi.org/10.1007/s004210170002
  3. Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64-85.
  4. Moldoveanu AI, Shephard RJ, Shek PN. The Cytokine Response to Physical Activity and Training. Sports Med. 2001;31:115-44. https://doi.org/10.2165/00007256-200131020-00004
  5. Dinarello CA. Proinflammatory Cytokines. CHEST. 2000;118:503-8. https://doi.org/10.1378/chest.118.2.503
  6. Allen J, Sun Y, Woods JA. Exercise and the Regulation of Inflammatory Responses. Prog Mol Biol Transl Sci. 2015;135:337-54. https://doi.org/10.1016/bs.pmbts.2015.07.003
  7. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995;79:675-86. https://doi.org/10.1152/jappl.1995.79.3.675
  8. Niess AM, Dickhuth HH, Northoff H, Fehrenbach E. Free radicals and oxidative stress in exercise--immunological aspects. Exerc Immunol Rev. 1999;5:22-56.
  9. Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radic Biol Med. 2007;43:901-10. https://doi.org/10.1016/j.freeradbiomed.2007.05.022
  10. Tanskanen M, Atalay M, Uusitalo A. Altered oxidative stress in overtrained athletes. J Sports Sci. 2010;28:309-17. https://doi.org/10.1080/02640410903473844
  11. Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18:357-71. https://doi.org/10.1016/j.jnutbio.2006.10.005
  12. Li JJ, Oberley LW. Overexpression of manganese-containing superoxide dismutase confers resistance to the cytotoxicity of tumor necrosis factor alpha and/or hyperthermia. Cancer Res. 1997;57:1991-8.
  13. Gleeson M. Immune function in sport and exercise. J Appl Physiol. 2007;103:693-9. https://doi.org/10.1152/japplphysiol.00008.2007
  14. Martin SA, Pence BD, Woods JA. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev. 2009;37:157-64. https://doi.org/10.1097/JES.0b013e3181b7b57b
  15. Fiore AE, Shay DK, Broder K, Iskander JK, Uyeki TM, Mootrey G, Bresee JS, Cox NJ. Centers for cisease control and prevention. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices (ACIP), 2009. MMWR Recomm Rep. 2009;58:1-52. Erratum in MMWR Recomm Rep. 2009;58:896-7.
  16. Mackinnon LT, Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining. Int J Sports Med. 1994;15 Suppl 3:S179-83. https://doi.org/10.1055/s-2007-1021134
  17. Gleeson M, Pyne DB, Austin JP, Lynn Francis J, Clancy RL, McDonald WA et al. Epstein-Barr virus reactivation and upper-respiratory illness in elite swimmers. Med Sci Sports Exerc. 2002;34:411-7. https://doi.org/10.1097/00005768-200203000-00005
  18. Fahlman MM, Engels H-J. Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc. 2005;37:374-80. https://doi.org/10.1249/01.MSS.0000155432.67020.88
  19. Kellmann M, Bertollo M, Bosquet L, Brink M, Coutts AJ, Duffield R et al. Recovery and Performance in Sport: Consensus Statement. Int J Sports Physiol Perform. 2018;13:240-5. https://doi.org/10.1123/ijspp.2017-0759
  20. Alessio HM, Goldfarb AH, Cao G. Exercise-induced oxidative stress before and after vitamin C supplementation. Int J Sport Nutr. 1997;7:1-9. https://doi.org/10.1123/ijsn.7.1.1
  21. Meydani M, Evans WJ, Handelman G, Biddle L, Fielding RA, Meydani SN et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am J Physiol. 1993;264: R992-8.
  22. Peternelj T-T, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011;41:1043-69. https://doi.org/10.2165/11594400-000000000-00000
  23. McGinley C, Shafat A, Donnelly AE. Does Antioxidant Vitamin Supplementation Protect against Muscle Damage? Sports Med. 2009;39:1011-32. https://doi.org/10.2165/11317890-000000000-00000
  24. Ramirez P, Torres S, Lama C, Mantecon L, Unamunzaga C, Infante C. TetraSOD activates the antioxidant response pathway in human cells: An in vitro approach. Afr J Biotechnol. 2020;19:367-73.
  25. Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 1996;21:213-38. https://doi.org/10.2165/00007256-199621030-00005
  26. Jakeman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA. Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol. 2017;117:575-82. https://doi.org/10.1007/s00421-017-3543-y
  27. Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189:41-54. https://doi.org/10.1016/S0300-483X(03)00151-3
  28. Wilson J, Wilson S, Loenneke J, Wray M, Norton L, Campbell B et al. Effects of Amino Acids and their Metabolites on Aerobic and Anaerobic Sports. Strength Cond J. 2012;34:33-48.
  29. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-91. https://doi.org/10.3758/BF03193146
  30. Sharp M, Sahin K, Stefan M, Orhan C, Gheith R, Reber D et al. Phytoplankton Supplementation Lowers Muscle Damage and Sustains Performance across Repeated Exercise Bouts in Humans and Improves Antioxidant Capacity in a Mechanistic Animal. Nutrients. 2020;12:1990. https://doi.org/10.3390/nu12071990
  31. Raeder C, Wiewelhove T, Westphal-Martinez MP, Fernandez-Fernandez J, de Paula Simola RA, Kellmann M et al. Neuromuscular Fatigue and Physiological Responses After Five Dynamic Squat Exercise Protocols. J Strength Cond Res. 2016;30:953-65. https://doi.org/10.1519/JSC.0000000000001181
  32. Ahtiainen JP, Pakarinen A, Kraemer WJ, Hakkinen K. Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med. 2003;24:410-8. https://doi.org/10.1055/s-2003-41171
  33. Benson C, Docherty D, Brandenburg J. Acute neuromuscular responses to resistance training performed at different loads. J Sci Med Sport. 2006;9:135-42. https://doi.org/10.1016/j.jsams.2005.07.001
  34. Mazzetti SA, Kraemer WJ, Volek JS, Duncan ND, Ratamess NA, Gomez AL et al. The influence of direct supervision of resistance training on strength performance. Med Sci Sports Exerc. 2000;32:1175-84. https://doi.org/10.1097/00005768-200006000-00023
  35. Garnacho-Castano MV, Lopez-Lastra S, Mate-Munoz JL. Reliability and validity assessment of a linear position transducer. J Sports Sci Med. 2015;14:128-36.
  36. Jehanli A, Dunbar J, Skelhorn S. Development and validation of an oral fluid collection device and its use in the immunoassay of salivary steroids and immunoglobulins in sports persons. Proc 10th Symp Intl Soc Ex Imunol. 2011.
  37. Liu Y-F, Chen H, Yu L, Kuo Y-M, Wu F-S, Chuang J-I et al. Upregulation of hippocampal TrkB and synaptotagmin is involved in treadmill exercise-enhanced aversive memory in mice. Neurobiol Learn Mem. 2008;90:81-9. https://doi.org/10.1016/j.nlm.2008.02.005
  38. Tan SH, Tan SB. The Correct Interpretation of Confidence Intervals. Proc Singap Healthc. 2010;19:276-8. https://doi.org/10.1177/201010581001900316
  39. Morgan DL, Allen DG. Early events in stretch-induced muscle damage. J Appl Physiol. 1999;87:2007-15. https://doi.org/10.1152/jappl.1999.87.6.2007
  40. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537:333-45. https://doi.org/10.1111/j.1469-7793.2001.00333.x
  41. Philippou A, Maridaki M, Bogdanis GC. Angle-specific impairment of elbow flexors strength after isometric exercise at long muscle length. J Sports Sci. 2003;21:859-65. https://doi.org/10.1080/0264041031000140356
  42. Philippou A, Bogdanis GC, Nevill AM, Maridaki M. Changes in the angle-force curve of human elbow flexors following eccentric and isometric exercise. Eur J Appl Physiol. 2004;93:237-44. https://doi.org/10.1007/s00421-004-1209-z
  43. Jones DA, Newham DJ, Round JM, Tolfree SE. Experimental human muscle damage: morphological changes in relation to other indices of damage. J Physiol. 1986;375:435-48. https://doi.org/10.1113/jphysiol.1986.sp016126
  44. Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1999;5: 5-21.
  45. Philippou A, Bogdanis G, Maridaki M, Halapas A, Sourla A, Koutsilieris M. Systemic cytokine response following exercise-induced muscle damage in humans. Clin Chem Lab Med. 2009;47:777-82.
  46. Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288:R345-53. https://doi.org/10.1152/ajpregu.00454.2004
  47. Penailillo L, Blazevich A, Numazawa H, Nosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25:417-27. https://doi.org/10.1111/sms.12241
  48. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091-116. https://doi.org/10.1007/s00421-016-3346-6
  49. Zajac A, Chalimoniuk M, Maszczyk A, Golas A, Lngfort J. Central and Peripheral Fatigue During Resistance Exercise - A Critical Review. J Hum Kinet. 2015;49:159-69. https://doi.org/10.1515/hukin-2015-0118
  50. Loscher WN, Nordlund MM. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Muscle Nerve. 2002;25:864-72. https://doi.org/10.1002/mus.10124
  51. Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci Basic Clin. 2015;188:19-23. https://doi.org/10.1016/j.autneu.2014.10.018
  52. Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36:881-909. https://doi.org/10.2165/00007256-200636100-00006
  53. Fragala MS, Kraemer WJ, Denegar CR, Maresh CM, Mastro AM, Volek JS. Neuroendocrine-immune interactions and responses to exercise. Sports Med. 2011;41:621-39. https://doi.org/10.2165/11590430-000000000-00000
  54. Roberts JA. Viral illnesses and sports performance. Sports Med. 1986;3:298-303. https://doi.org/10.2165/00007256-198603040-00006
  55. Heath GW, Ford ES, Craven TE, Macera CA, Jackson KL, Pate RR. Exercise and the incidence of upper respiratory tract infections. Med Sci Sports Exerc. 1991;23:152-7.
  56. Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc. 2002;34:1242-8. https://doi.org/10.1097/00005768-200208000-00003
  57. Nieman DC, Johanssen LM, Lee JW, Arabatzis K. Infectious episodes in runners before and after the Los Angeles Marathon. J Sports Med Phys Fitness. 1990;30:316-28.
  58. Friman G, Ilback NG. Acute infection: metabolic responses, effects on performance, interaction with exercise, and myocarditis. Int J Sports Med. 1998;19 Suppl 3:S172-82. https://doi.org/10.1055/s-2007-971990
  59. Kreher JB. Diagnosis and prevention of overtraining syndrome: an opinion on education strategies. Open Access J Sports Med. 2016;7:115-22. https://doi.org/10.2147/OAJSM.S91657
  60. Gleeson M, McDonald WA, Cripps AW, Pyne DB, Clancy RL, Fricker PA. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol. 1995;102:210-6. https://doi.org/10.1111/j.1365-2249.1995.tb06658.x
  61. Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species. Front Biosci J Virtual Libr. 2007;12:4826-38. https://doi.org/10.2741/2431
  62. Pattwell DM, Patwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med. 2004;37:1064-72. https://doi.org/10.1016/j.freeradbiomed.2004.06.026
  63. Gissel H. The role of Ca2+ in muscle cell damage. Ann N Y Acad Sci. 2005;1066:166-80. https://doi.org/10.1196/annals.1363.013
  64. Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil. 2015;36:377-93. https://doi.org/10.1007/s10974-015-9438-9
  65. Mason RP, Walter MF, Mason PE. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis. Free Radic Biol Med. 1997;23:419-25. https://doi.org/10.1016/S0891-5849(97)00101-9
  66. Tryfidou DV, McClean C, Nikolaidis MG, Davison GW. DNA Damage Following Acute Aerobic Exercise: A Systematic Review and Meta-analysis. Sports Med. 2020;50:103-27. https://doi.org/10.1007/s40279-019-01181-y
  67. Alessio HM. Exercise-induced oxidative stress. Med Sci Sports Exerc. 1993;25:218-24. https://doi.org/10.1249/00005768-199302000-00010
  68. Sjodin B, Hellsten Westing Y, Apple FS. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 1990;10:236-54. https://doi.org/10.2165/00007256-199010040-00003
  69. Chaudhri G, Clark IA. Reactive oxygen species facilitate the in vitro and in vivo lipopolysaccharide-induced release of tumor necrosis factor. J Immunol. 1989; 143: 1290-4. https://doi.org/10.4049/jimmunol.143.4.1290
  70. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247-58. https://doi.org/10.1002/j.1460-2075.1991.tb07761.x
  71. Pfizenmaier K, Scheurich P, Himmler A, Schutze S, Kronke M. Tumor Necrosis Factor and Lymphotoxin-Induced Signal Pathways. In Freund M., Link H., Schmidt R.E., Welte K. (eds), Cytokines in Hemopoiesis, Oncology, and AIDS II. Springer-Verlag, Berlin Heidelberg. Berlin, Germany. 1992;233-8.
  72. DeForge LE, Fantone JC, Kenney JS, Remick DG. Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood. J Clin Invest. 1992;90:2123-9. https://doi.org/10.1172/JCI116097
  73. Grimble RF. Malnutrition and the immune response. 2. Impact of nutrients on cytokine biology in infection. Trans R Soc Trop Med Hyg. 1994;88:615-9. https://doi.org/10.1016/0035-9203(94)90195-3
  74. Dehoux M, Gobier C, Lause P, Bertrand L, Ketelslegers J-M, Thissen J-P. IGF-I does not prevent myotube atrophy caused by proinflammatory cytokines despite activation of Akt/Foxo and GSK-3beta pathways and inhibition of atrogin-1 mRNA. Am J Physiol Endocrinol Metab. 2007;292:145-50.
  75. Bistrian BR, Schwartz J, Istfan NW. Cytokines, muscle proteolysis, and the catabolic response to infection and inflammation. Proc Soc Exp Biol Med. 1992;200:220-3. https://doi.org/10.3181/00379727-200-43423
  76. Grounds MD, Radley HG, Gebski BL, Bogoyevitch MA, Shavlakadze T. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharmacol Physiol. 2008;35:846-51. https://doi.org/10.1111/j.1440-1681.2007.04868.x
  77. Grimble RF. Nutritional modulation of cytokine biology. Nutrition. 1998;14:634-40. https://doi.org/10.1016/S0899-9007(98)00010-0
  78. Babior BM. Oxidants from phagocytes: agents of defense and destruction. Blood. 1984;64:95966. https://doi.org/10.1182/blood.V64.5.959.959
  79. Hemila H. Vitamin C and the common cold. Br J Nutr. 1992;67:3-16. https://doi.org/10.1079/BJN19920004
  80. Ashton T, Young IS, Peters JR, Jones E, Jackson SK, Davies B, Rowlands CC. Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study. J Appl Physiol. 1999; 87:2032-6. https://doi.org/10.1152/jappl.1999.87.6.2032
  81. Nieman DC, Henson DA, Butterworth DE, Warren BJ, Davis JM, Fagoaga OR, Nehlsen Cannarella SL. Vitamin C supplementation does not alter the immune response to 2.5 hours of running. Int J Sport Nutr. 1997;7:173-84. https://doi.org/10.1123/ijsn.7.3.173
  82. Petersen EW, Ostrowski K, Ibfelt T, Richelle M, Offord E, Halkjaer-Kristensen J, Pedersen BK. Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol-Cell Physiol. 2001;280:1570-5. https://doi.org/10.1152/ajpcell.2001.280.6.C1570
  83. Vassilakopoulos T, Karatza M-H, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C. Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol. 2003;94:1025-32. https://doi.org/10.1152/japplphysiol.00735.2002
  84. Fischer CP, Hiscock NJ, Penkowa M, Basu S, Vessby B, Kallner A, Sjoberg LB, Pedersen BK. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004; 558:633-45. https://doi.org/10.1113/jphysiol.2004.066779
  85. Bassit RA, Curi R, Costa Rosa LFBP. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids. 2008;35:425-31. https://doi.org/10.1007/s00726-007-0582-4
  86. Kraemer WJ, Hatfield DL, Comstock BA, Fragala MS, Davitt PM, Cortis C, Wilson JM, Lee EC, Newton RU, Dunn-Lewis C, Hakkinen K, Szivak TK, Hooper DR, Flanagan SD, Looney DP, White MT, Volek JS, Maresh CM. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise. J Am Coll Nutr. 2014;33:247-55. https://doi.org/10.1080/07315724.2014.911669
  87. Townsend JR, Fragala MS, Jajtner AR, Gonzalez AM, Wells AJ, Mangine GT, Robinson EH 4th, McCormack WP, Beyer KS, Pruna GJ, Boone CH, Scanlon TM, Bohner JD, Stout JR, Hoffman JR. β-Hydroxy-β-methylbutyrate (HMB)-free acid attenuates circulating TNF-α and TNFR1 expression postresistance exercise. J Appl Physiol. 2013;115:1173-82. https://doi.org/10.1152/japplphysiol.00738.2013
  88. Santos SA, Silva ET, Caris AV, Lira FS, Tufik S, Dos Santos RVT. Vitamin E supplementation inhibits muscle damage and inflammation after moderate exercise in hypoxia. J Hum Nutr Diet Off J Br Diet Assoc. 2016;29:516-22. https://doi.org/10.1111/jhn.12361
  89. Nie J, Lin H. Effects of vitamin C supplementation on recovery from eccentric exercise-induced muscle soreness and damage in junior athletes. J Exerc Sci Fit. 2004;2:94-8.
  90. McBride JM, Kraemer WJ, Triplett-McBride T, Sebastianelli W. Effect of resistance exercise on free radical production. Med Sci Sports Exerc. 1998;30:67-72.
  91. Rokitzki L, Logemann E, Sagredos AN, Murphy M, Wetzel-Roth W, Keul J. Lipid peroxidation and antioxidative vitamins under extreme endurance stress. Acta Physiol Scand. 1994;151:149-58. https://doi.org/10.1111/j.1748-1716.1994.tb09732.x
  92. Bryer SC, Goldfarb AH. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab. 2006;16:270-80. https://doi.org/10.1123/ijsnem.16.3.270
  93. Reid MB, Li Y-P. Tumor necrosis factor-α and muscle wasting: a cellular perspective. Respir Res. 2001;2:269-72. https://doi.org/10.1186/rr67
  94. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6.
  95. Tomeleri CM, Ribeiro AS, Souza MF, Schiavoni D, Schoenfeld BJ, Venturini D, Barbosa DS, Landucci K, Sardinha LB, Cyrino ES. Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: a randomized controlled trial. Exp Gerontol. 2016;84:80-7. https://doi.org/10.1016/j.exger.2016.09.005
  96. Fry AC, Kraemer WJ, Stone MH, Warren BJ, Kearney JT, Maresh CM, Weseman CA, Fleck SJ. Endocrine and performance responses to high volume training and amino acid supplementation in elite junior weightlifters. Int J Sport Nutr. 1993;3:306-22. https://doi.org/10.1123/ijsn.3.3.306
  97. Hakkinen K, Keskinen KL, Alen M, Komi PV, Kauhanen H. Serum hormone concentrations during prolonged training in elite endurance-trained and strength-trained athletes. Eur J Appl Physiol. 1989;59:233-8. https://doi.org/10.1007/BF02386193
  98. Hayes LD, Grace FM, Baker JS, Sculthorpe N. Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Med. 2015;45:713-26. https://doi.org/10.1007/s40279-015-0306-y