• Title/Summary/Keyword: matrix modifier

Search Result 30, Processing Time 0.023 seconds

A Comparative Analysis of Whole Blood Cadmium by Atomic Absorption Spectrophotometry with a Graphite Furnace (흑연로 원자흡수분광법에 의한 혈액중 카드뮴 정량분석)

  • Park, Jong An;Oh, Hye Jeong;Lee, Jong Hwa
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.301-312
    • /
    • 1996
  • This study was performed to search a optimal analyzing method of cadmium in whole-blood. Cadmium was determined by graphite furnace atomic absorption spectrometry(GFAAS). We investigated the effect of ashing temperature on the absorbance of cadmium in a simple dilution(ten-fold) method with triton X-100 and matrix modifier methods treated with $NH_4H_2PO_4$(1 and 3%) and $Pd(NO_3)_2$(0.00l and 0.005%) as matrix modifier. We also compared the reported reference values of standard blood with values resulted from optimal analyzing conditions of this study. In case of a simple dilution method, when ashing temperature was set at $450^{\circ}C$, the absorbance of sample and background were $0.334{\pm}0.012$ and $1.382{\pm}0.245$, respectively. Background level was higher than the value(0.8) that can be corrected by $D_2$ background correction method. As ashing temperature was rised to $500^{\circ}C$, the absorbance of sample and background were $0.178{\pm}0.008$ and $0.711{\pm}0.223$ respectively. The higher ashing temperature($450^{\circ}C-650^{\circ}C$) was, the lower the absorbance of sample was. In case of a matrix modifier method with $NH_4H_2PO_4$(1 and 3%), when ashing temperature was rised from $500^{\circ}C$ to $650^{\circ}C$, the absorbance of sample slightly changed. The absorbances of sample at $600^{\circ}C$ were $0.230{\pm}0.017$ and $0.137{\pm}0.012$, respectively. These values were larger than that of simple dilution method. But the absorbance of background was higher than the level that can be corrected by $D_2$ method. In case of a matrix modifier method with $Pd(NO_3)_2$(0.001 and 0.005%), the absorbance of sample and background were higher than those of other methods and were stable and reproducible. When ashing temperature was over $550^{\circ}C$, the absorbance of sample was significantly decreased. In case of 0.005% $Pd(NO_3)_2$ carbon residue remained in graphite tube affected the absorbance of sample and background. From these results, We propose that in case of a simple dilution(ten-fold) method with triton X-100 ashing temperature must be maintained below $400^{\circ}C$. In order to diminish the absorbance of background, the alternative method is attenuation of injection volume or multiplication of dilution ratio. We recommend $Pd(NO_3)_2$ than $NH_4H_2PO_4$ as a matrix modifier. In case of a matrix modifier method with $Pd(NO_3)_2$ ashing temperature might be maintained below $550^{\circ}C$.

  • PDF

Matrix Modification for Atomic Absorption Spectrophotometric Determination of Volatile Elements (Ⅱ). Determination of Trace Germanium by Electrothermal Atomization (휘발성 원소들의 원자흡수 분광분석을 위한 매트릭스 개선에 관한 연구(제2보). 전열 원자화에 의한 흔적량 게르마늄의 정량)

  • Choi, Ho Sung;Choi, Jong Moon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 1996
  • A matrix modification was studied for the determination of trace germanium in mineral waters by electrothermal atomic absorption spectrophotometry (ET-AAS). For this, the type and quantity of modifier as well as the use of auxiliary modifier were investigated to realize the efficient modification. Germanium suffers from low sensitivity and poor reproducibility in ET-AAS determination because of the premature loss of germanium via volatile germanium monoxide formation when heated in the presence of carbon. Therefore, the addition of a matrix modifier is necessary to stablize the germanium, thermally and chemically. By the addition of palladium (10 ${\mu}g/mL)$ as a single modifier to the sample containing 500 ng/mL germanium, the charring temperature could be raised from 800 to $1000^{\circ}C$, and its absorbance was also increased, but the atomization temperature was not raised. In this case, the absorbance of germanium was not changed in the range of 10∼70 ${\mu}g/mL$ of palladium added. On the other hand, it was considered that the use of a mixed modifier could modifiy the matrix more effectively than with a single modifier. The best results were obtained by using 1% ammonium hydroxide as an auxiliary modifier together with 10 ${\mu}g/mL$ palladium. The charring temperature could be raised from 800 to $1100^{\circ}C$, without any change of the atomization temperature. With above optimum conditions, the trace amount of germanium in several mineral waters were determined by a calibration curve method, and good recoveries of more than 95% were also obtained in the samples in which a given amount of germanium was spiked. The detection limit of this method was about 6.9 ng/mL.

  • PDF

Accuracy and Precision according to Optimal Preparation by Analysis of Urine Lead (뇨중 연 분석의 정확성 및 정밀성에 미치는 최적 전처리법)

  • 장봉기;정은희;박종안;손부순;이종화
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • In order to propose a optimum method increasing accuracy and reproducibility in analysis of urine lead levels, we compared matrix modifier addition method and microwave digestion method. The results were as follows ; 1. Where the concentration of $Pd(NO_3)_2$(matrix modifier) was $50mg/{\ell}$, and ashing temperature was $900^{\circ}C$, the results were optimum. In case of matrix modifier addition method, the average coefficient of variation (CV) of normal man was 24.1%, and lead worker was 7.9%. The average urine lead levels of standard were $10.42\mu{g}/{\ell}$ and $19.89\mu{g}/{\ell}$ , the accuracies compared to reference values were 97.0% and 92.6%, respectively. 2. Microwave digestion temperature($160~180^{\circ}C$), time(15~25min) and the ratio of urine/ashing acid(1:1~4:1) did not significantly affect lead absorbance and background absorbance. Therefore we set up a optimum analytical conditions as follows: temperature, $160^{\circ}C$; time, 15min; the ratio of urine/ashing acid, 4:1. after samples were digested by the above analytical conditions, lead absorbance and background absorbance was measured at $450^{\circ}C$ as ashing temperature. The average coefficient of variation (CV) of normal man was 12.4%, and lead worker was 6.2%. The average urine lead levels of standard urine were $10.66\mu{g}/{\ell}$ and $23.31\mu{g}/{\ell}$, the accuracies compared to reference values were 99.3% and 103.9%, respectively. From the results, we suggest that microwave digestion method is a more favorable method than matrix modifier addition method because of easiness to reduce organic matter, possibility to analysis at low temperature and accuracy.

  • PDF

Matrix Modification for Graphite Furnace Atomic Absorption Spectrophotometric Determination of Volatile Elements(III) Trace Bismuth

  • Kim, Young-Sang;Choi, Jong-Moon;Kim, Young-Man
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.435-442
    • /
    • 1995
  • A matrix modification was studied for the determination of trace bismuth in water samples by graphite furnace atomic absorption spectrophotometry. The type and quantity of modifiers as well as the use of auxiliary modifiers were investigated to realize the efficient modification. Palladium was chosen as a single modifier. By the addition of palladium($5{\mu}g/mL$) to 100 ng/mL bismuth solution, the temperatures could be raised from $500^{\circ}C$ to $1,300^{\circ}C$ for the charring and from $2,000^{\circ}C$ to $2,200^{\circ}C$ for the atomization as well as the sensitivity and reproducibility were improved. The absorbance of bismuth was maximum and not changed in the range of Pd $3-25{\mu}g/mL$. And several materials were examined as an auxiliary modifier. The mixed solution of $1{\mu}g/mL$ palladium and $200{\mu}g/mL$ nickel have raised the temperatures as with $5{\mu}g/mL$ palladium only. The maximum absorbance of bismuth was shown in the nickel concentration range of $100-300{\mu}g/mL$ in $1{\mu}g/mL$ palladium modified system. With such optimum conditions, the trace amount of bismuth in several water samples could be determined by a calibration curve method, and good recoveries were also obtained.

  • PDF

The role of matrix modifier for the determination of Lead (Pb) in blood by graphite furnace atomic absorption spectrometry (흑연로 원자흡수분광법에 의한 혈중 납분석시 매트릭스 변형제의 역할)

  • Yoo, Kwang-Sik;Kwon, Jin-Kee
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-358
    • /
    • 1992
  • The direct determination of lead in the whole-blood by graphite furnace atomic absorption spectrometric analysis was carried out by using the sample which was diluted five-fold with 1% Triton X-100. Matrix modification was tried to remove the interferences of blood matrix and also to get the optimum analytical condition. Good agreement with certificated values in reference materials(bovine blood) supplied by comparison program in Japan was obstained when 1% $(NH_4)_2HPO_4$ as matrix modifier and ashing temperature, $700^{\circ}C$ were used or 1% $(NH_4)_2HPO_4$ and 0.1% $PdCl_2$ as matrix modifier and ashed at $700^{\circ}C$. Standard deviations were appeared as 2.2~6.3% for 1% $(NH_4)_2HPO_4$ and 3.1~9.1% for 1% $(NH_4)_2HPO_4$ and 0.1% $PdCl_2$ in the range of $31{\sim}624{\mu}gPb/l$.

  • PDF

The role of matrix modifier and for the determination of cadmium in blood by graphite furnace atomic absorption spectrometry (흑연로 원자흡수분광법에 의한 혈중 카드뮴 분석시 매트릭스 개선제(matrix modifier)의 역할)

  • Yoo, Kwang-Sik;Kim, Chang-Bok;Kwon, Jin-Kee
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • The low concentration of cadmium in the whole-blood was determined by graphite furnace atomic absorption spectrometry(GFAAS) after the sample was diluted five-fold by 1% Triton X-100, 2% $(NH_4)_2HPO_4$ as matrix modifier and pyrocoated graphite tube with L'vov platform was tried remove the interferences of blood matrix and reduce the loss of volatility of cadmium at higher ashing temperature($600^{\circ}C$). The criteria for evaluating the accuracy and precision of this analysis was confirmed by analysis of interlaboratory comparison(Japan) and NIST SRM No. 909(Cd in Serum). The limit of the determination for cadium was 0.1ng/ml and the relative standard deviation(RSD) at 1.0ng/ml level was about 10% for the GFAAS.

  • PDF

Matrix Modification for Graphite Furnace Atomic Absorption Spectrophotometric Determination of Volatile Elements (Ⅰ). Determination of Trace Lead by Graphite Furnace Atomization (휘발성 원소들의 원자흡수 분광분석을 위한 매트릭스 개선에 관한 연구 (제 1 보). 흑연로 원자화에 의한 흔적량 납의 정량)

  • Choi, Jong Moon;Choi, Ho Sung;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.204-212
    • /
    • 1995
  • The graphite furnace atomic absorption spectrophotometric determination of trace lead in water samples was studied using matrix modifiers. In order to modify the sample matrix, the type and optimum amount of the modifier were investigated with a given concentration of Pb solution. In fact, if the matrix is not modified, lead has low ashing and atomization temperatures as to give a low absorbance with bad reproducibility because of its volatility. Therefore, optimum modifiers should be used to stabilize the atomization. In this work, the ashing and atomization temperatures were raised from 400 and $1800^{\circ}C$, to 1,000 and $2000^{\circ}C$, by the addition of palladium to 50 ng/mL lead solution as a modifier. The concentration of palladium was 5.0 ${\mu}g/mL$ in the modified solution. Furthermore, if 1.5 ${\mu}g/mL$ of aluminum was mixed with the palladium modifier as an auxiliary modifier, the ashing temperature could be increased $150^{\circ}C$ additionally. With such a treatment, the sensitivity was improved more than 5 times of the solution unmodified and the reproducible results of less than 5% RSD were obtained in the samples of university's waste water and pipe-washing tap water. It could be concluded that this procedure was quantitative in the determination of trace lead from the recoveries of more than 88% obtained in the samples in which a given amount of lead was spiked.

  • PDF

Toughening of PLA stereocomplex by Impact modifiers (충격보강제에 의한 PLA stereocomplex의 강인화 연구)

  • Nam, Byeong-Uk;Lee, Bum-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.919-925
    • /
    • 2012
  • We tried to blend PLLA and PDLA at overall compositions to form PLA stereocomplexes (SC). The presence of the SC crystalline phase in the PLLA matrix was verified by differential scanning calorimetry (DSC). As a result, a various PDLA composition of the PLA SC blends can influence PLA SC formation. And the largest amount of PLA SC crystallites was formed when PLLA/PDLA ratio is 50/50. In addition, we have tried to do PLA SC toughening with two impact modifiers in 92/8, 85/15 ratio of PLLA/PDLA to enhance the mechanical properties such as impact strength. Thermal and mechanical properties of PLA SC were investigated by DSC, HDT, Izod impact tester and UTM. PLA SC formation decreased when 10-20 wt% of Strong120 (impact modifier) was added. On the other hand, there is no effect on PLA SC formation when 10-20% of Elvaloy (impact modifier) was added. HDT values dramatically increased over $100^{\circ}C$ with the addition of PDLA. However, HDT decreased as Strong120 and Elvaloy content increased. Finally, we could find well balanced composition of toughened PLA SC with 10wt% of impact modifier in flexural modulus and impact strength.

Determination of Arsenic, Lead and Selenium in Rice Flour by Graphite Furnace Atomic Absorption Spectrometry (흑연로원자흡수분광법에 의한 쌀분말시료중의 비소, 납, 셀레늄의 정량)

  • Cho, Kyung-Haeng;Suh, Jung-Ki
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • A graphite furnace atomic absorption spectrometry (GFAAS) with matrix modification has been used to determine trace amounts of arsenic, lead and selenium in rice flour samples. A mixed solution of palladium and magnesium nitrate was used as a matrix modifier to convert the analyte elements into a phase of higher thermostability and to increase the volatility of concomitants in graphite furnace. Matrix modification effects by the mixed solution were investigated for several elements (As, Cd, Cu, Pb, Se, Zn). It has been found that the matrix modifier substantially increase the pyrolysis and atomization temperature, and absorbance for As, Pb and Se. The concentration of As, Pb and Se in rice flour samples were determined by standard addition method with Zeeman background correction after microwave acid digestion. In this method the characteristic concentrations of As, Pb and Se are 26 ng/g, 18 ng/g, 24 ng/g on the basis of dry sample respectively.

  • PDF

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.