Browse > Article
http://dx.doi.org/10.5714/CL.2016.19.047

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix  

Carrillo-Escalante, H.J. (Centro de Investigacion Científica de Yucatan, A.C. (CICY), Unidad de Materiales)
Alvarez-Castillo, A. (InstitutoTecnologico de Zacatepec, Calzada Tecnologico)
Valadez-Gonzalez, A. (Centro de Investigacion Científica de Yucatan, A.C. (CICY), Unidad de Materiales)
Herrera-Franco, P. J. (Centro de Investigacion Científica de Yucatan, A.C. (CICY), Unidad de Materiales)
Publication Information
Carbon letters / v.19, no., 2016 , pp. 47-56 More about this Journal
Abstract
In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.
Keywords
modified epoxy; interfacial shear strength; silane coupling agent; delamination resistance; fracture toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rajasekaran R, Alagar M. Mechanical properties of bismaleimides modified polysulfone epoxy matrices. Int J Polym Mater Polym Biomater, 56, 911 (2007). http://dx.doi.org/10.1080/00914030601123401.   DOI
2 Mujika F, De Benito A, Fernández B, Vázquez A, Llano-Ponte R, Mondragon I. Mechanical properties of carbon woven reinforced epoxy matrix composites: a study on the influence of matrix modification with polysulfone. Polym Compos, 23, 372 (2002). http://dx.doi.org/10.1002/pc.10439.   DOI
3 Garton A, Daly JH, Stevenson WTK, Wiles DM. The crosslinking of epoxy resins at interfaces. III. At a carbonized polyacrylonitrile surface. J Polym Sci Part A Polym Chem, 24, 2383 (1986). http://dx.doi.org/10.1002/pola.1986.080241001.   DOI
4 Földes E, Gulyás J, Rosenberger S, Pukánszky B. Chemical modification and adhesion in carbon fiber/epoxy micro-composites; coupling and surface coverage. Polym Compos, 21, 387 (2000). http://dx.doi.org/10.1002/pc.10197.   DOI
5 Kim JK, Mai YW. High strength, high fracture toughness fibre composites with interface control: a review. Compos Sci Technol, 41, 333 (1991). http://dx.doi.org/10.1016/0266-3538(91)90072-W.   DOI
6 Escalante-Solís MA. Estudio de la tenacidad al impacto de unaresinaepóxicamodificada con un termoplástico, in Materiales., Centro de Investigación Científica de Yucatán A.C., Mérida, Yucatán, México, MsC. Thesis (2010).
7 Brantseva TV, Gorbatkina YUA, Dutschk V, Vogel R, Grundke K, Kerber ML. Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre composites. I. Study of processes during matrix/glass fibre interface formation. J Adhes Sci Technol, 17, 2047 (2003). http://dx.doi.org/10.1163/156856103322584209.   DOI
8 Brantseva TV, Gorbatkina YA, Mäder E, Dutschk V, Kerber ML. Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre composites. II. Adhesion of the epoxy-polysulfone matrices to glass fibres. J Adhes Sci Technol, 18, 1293 (2004). http://dx.doi.org/10.1163/1568561041588237.   DOI
9 Brantseva TV, Gorbatkina YA, Dutschk V, Schneider K, Häßler R. Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre composites. III. Properties of the cured blends and their structures in the polymer/fibre interphase. J Adhes Sci Technol, 18, 1309 (2004). http://dx.doi.org/10.1163/1568561041588183.   DOI
10 Yun NG, Won YG, Kim SC. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum. Polymer, 45, 6953 (2004). http://dx.doi.org/10.1016/j.polymer.2004.08.020.   DOI
11 Solodilov VI, Gorbatkina YA. Properties of unidirectional GFRPs based on an epoxy resin modified with polysulphone or an epoxyurethane oligomer. Mech Compos Mater, 42, 513 (2006). http://dx.doi.org/10.1007/s11029-006-0062-z.   DOI
12 Gorbatkina YA, Ivanova-Mumjieva VG, Lebedeva OV. Adhesion of modified polymers to fibres: maxima on adhesive strength-modifier amount curves and the causes of their appearance. Int J Adhes Adhes, 29, 9 (2009). http://dx.doi.org/10.1016/j.ijadhadh.2007.09.004.   DOI
13 Guduri BR, Luyt AS. Mechanical and morphological properties of carbon fiber reinforced-modified epoxy composites. J Appl Polym Sci, 101, 3529 (2006). http://dx.doi.org/10.1002/app.24592.   DOI
14 Madhukar MS, Drzal LT. Fiber-matrix adhesion and its effect on composite mechanical properties: IV. mode I and mode II fracture toughness of graphite/epoxy composites. J Compos Mater, 26, 936(1992). http://dx.doi.org/10.1177/002199839202600701.   DOI
15 Brantseva TV, Gorbatkina YUA, Kerber ML. Adhesion of epoxy-thermoplastic and polysulfone-LCP matrices to fibres. Compos Interfaces, 12, 187 (2005). http://dx.doi.org/10.1163/1568554053971524.   DOI
16 Moreno-Chulim MV. Caracterización Fisicoquímica de la Inter-face Fibra de Carbon-Resina Epóxica. Tesis de Maestro en Ciencias, Centro de Investigación Científica de Yucatán, México, MSc Thesis (2006).
17 Montgomery DC. Design and Analysis of Experiments, John Wiley and Sons, New York (2001).
18 Hull D, Clyne TW. An Introduction to Composite Materials, Cambridge University Press, New York (1996).
19 ASTM D3171-99. Standard Test Methods for Constituent Content of Composite Materials, ASTM International, West Conshohocken (1999). http://dx.doi.org/10.1520/D3171-99.   DOI
20 ASTM D3039. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken (2000). http://dx.doi.org/ 10.1520/D3039_D3039M-00.   DOI
21 Kaynak C, Orgun O, Tincer T. Matrix and interface modification of short carbon fiber-reinforced epoxy. Polym Test, 24, 455 (2005). http://dx.doi.org/10.1016/j.polymertesting.2005.01.004.   DOI
22 ASTM D5528-94a. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West Conshohocken (2001). http://dx.doi.org/10.1520/D5528-94A.   DOI
23 Nielsen LE, Landel RF. Mechanical Properties of Polymers and Composites, Marcel Dekker, New York (1994).
24 Pisanova E, Mäder E. Acid-base interactions and covalent bonding at a fiber-matrix interface: contribution to the work of adhesion and measured adhesion strength. J Adhes Sci Technol, 14, 415 (2000). http://dx.doi.org/10.1163/156856100742681.   DOI
25 Yun NG, Won YG, Kim SC. Toughening of epoxy composite by dispersing polysulfone particle to form morphology spectrum. Polym Bull, 52, 365 (2004). http://dx.doi.org/10.1007/s00289-004-0293-x.   DOI
26 Liu SH, Nauman EB. On the micromechanics of composites containing spherical inclusions. J Mater Sci, 25, 2071 (1990). http://dx.doi.org/10.1007/BF01045766.   DOI
27 Johnsen BB, Kinloch AJ, Taylor AC. Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer, 46, 7352 (2005). http://dx.doi.org/10.1016/j.polymer.2005.05.151.   DOI
28 Marieta C, Schulz E, Irusta L, Gabilondo N, Tercjak A, Mondragon I. Evaluation of fiber surface treatment and toughening of thermoset matrix on the interfacial behaviour of carbon fiber-reinforced cyanate matrix composites. Compos Sci Technol, 65, 2189 (2005). http://dx.doi.org/10.1016/j.compscitech.2005.05.008.   DOI
29 Olmos D, González-Benito J. Visualization of the morphology at the interphase of glass fibre reinforced epoxy-thermoplastic polymer composites. Eur Polym J, 43, 1487 (2007). http://dx.doi.org/10.1016/j.eurpolymj.2007.01.004.   DOI
30 Zhang J, Guo Q, Huson M, Slota I, Fox B. Interphase study of thermoplastic modified epoxy matrix composites: Phase behaviour around a single fibre influenced by heating rate and surface treatment. Compos Part A Appl Sci Manuf, 41, 787 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.02.016.   DOI
31 Varley RJ, Hodgkin JH. Effect of reinforcing fibres on the morphology of a toughened epoxy/amine system. Polymer, 38, 1005(1997). http://dx.doi.org/10.1016/S0032-3861(96)00596-4.   DOI
32 Harris B, Braddell OG, Almond DP, Lefebvre C, Verbist J. Study of carbon fibre surface treatments by dynamic mechanical analysis. J Mater Sci, 28, 3353 (1993). http://dx.doi.org/10.1007/BF00354259.   DOI
33 Day RJ, Lovell PA, Wazzan AA, Toughened carbon/epoxy composites made by using core/shell particles. Compos Sci Technol, 61, 41 (2001). http://dx.doi.org/10.1016/S0266-3538(00)00169-X.   DOI