• Title/Summary/Keyword: matrix inequality

Search Result 534, Processing Time 0.023 seconds

Fuzzy Robust $H^{\infty}$ Controller Design for Discrete Uncertain Nonlinear Systems with Time Delays (시간지연을 가지는 비선형 불확실성 이산 시스템의 퍼지 견실 $H^{\infty}$ 제어기 설계)

  • 이형호;조상현이갑래박홍배
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.227-230
    • /
    • 1998
  • In this paper, we propose the design method of fuzzy robust H$\infty$ controller for the uncertain nonlinear discete-time systems with time delay. First, we represent a nonlinear plant with a modified T-S(Takagi-Sugeno) fuzzy model. Then design method utilizing the concept of PDC (parallel distributed compensation) is employed. For the modified T-S fuzzy model with uncertainty and delay, the sufficient condition of the quadratic stabilization with an H$\infty$ norm bound is presented in terms of Lyapunov stability theory and fuzzy robust H$\infty$ controller design method is given by LMI(linear matrix inequality) approach. Also an illustrative example is given to demonstrate the result of the proposed method.

  • PDF

Robust Decentralized Stabilization of Uncertain Large-Scale Discrete-Time Systems with Delays (시간지연을 갖는 이산시간 대규모 시스템의 강인 제어기 설계)

  • Park, Ju-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.7-14
    • /
    • 2000
  • This paper describes the synthesis of robust decentralized controllers for uncertain large-scale discrete-time systems with time-delays in subsystem interconnections. Based on the Lyapunov method, a sufficient condition for robust stability, is derived in terms of a linear matrix inequality (LMI). The solutions of the LMI can be easily obtained using various efficient convex optimization techniques. A numerical example is given to illustrate the proposed method.

  • PDF

MULTIPLICITY RESULTS FOR THE PERIODIC SOLUTIONS OF THE NONLINEAR HAMILTONIAN SYSTEMS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with almost polynomial and exponential potentials, $\dot{z}=J(G^{\prime}(z)+h(t))$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}=\frac{dz}{dt}$, $J=\(\array{0&-I\\I&o}\)$, I is the identity matrix on $R^n$, $H:R^{2n}{\rightarrow}R$, and $H_z$ is the gradient of H. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.

  • PDF

Optimal Intelligent Digital Redesign for a Class of Fuzzy-Model-Based Controllers

  • Chang-wook;Joo, Young-hoon;Park, Jin-bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.113-118
    • /
    • 2001
  • In this paper, we develop an optimal intelligent digital redesign method for a class of fuzzy-model-based controllers, effective for stabilization of continuous-time complex nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to extend the results of the classical digital redesign technique to complex nonlinear systems. Unlike the conventional intelligent digital redesign technique reported in the literature, the proposed method utilized the recently developed LMI optimization technique to obtain a digitally redesigned fuzzy-model-based controller. Precisely speaking, the intelligent digital redesign problem is converted to an equivalent optimization problem, and the LMI optimization method is used to find the digitally redesigned fuzzy-model-based controller. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control (LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어)

  • 양승윤;김인수;이만형
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

Design of Switching-Type Fuzzy-Model-Based Controller for the Duffing System (Duffing 시스템의 스위칭 모드 퍼지 모델 기반 제어기의 설계)

  • Kim, Joo-Won;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.15-17
    • /
    • 2001
  • This paper deals with a design problem of a switching-type fuzzy-model-based controller for a nonlinear system. Takagi-Sugeno(TS) fuzzy model and duffing forced-oscillation system are employed in designing the switching-type fuzzy controller. Finally, we analyze the stability of the global system controlled by the proposed controller.

  • PDF

A Method of Determining B-coefficient Applying VDLM/LRDA (전압의존형 부하모델과 손실재분배 알고리즘을 적용한 B계수 산정법)

  • Chae, Myung-Suk;Lee, Myung-Hwan;Kim, Byung-Seop;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1183-1185
    • /
    • 1999
  • The basic purpose of economic dispatch problem is that minimize fuel cost with inequality constraint of generator output. To solve this problem it is very important to express power loss equation that have quadratic function of generator output power included B-coefficient. This Paper presents a method in determining B-coefficient by use A-matrix that is calculated by loss re-distribution algorithm (LRDA) considering voltage dependent load model (VDLM)s. The Proposed algorithm is tested with IEEE 6 bus sample system, which shows the result in each cases by the change of load component factor.

  • PDF

$H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계)

  • Cho, Hyun-Chol;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.596-598
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for linear systems with saturating actuators. We consider a general saturating actuator and employ the multiplicative decomposition to deal with it effectively. Based on Linear Matrix Inequality (LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF

Reduced-order controller design via an iterative LMI method (반복 선형행렬부등식을 이용한 축소차수 제어기 설계)

  • Kim, Seog-Joo;Kwon, Soon-Man;Lee, Jong-Moo;Kim, Chun-Kyung;Cheon, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

LMI-Based Intelligent Digital Redesign for Multirate Sampled-Data Fuzzy Systems

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.