• 제목/요약/키워드: matrix composite

검색결과 2,242건 처리시간 0.028초

철도차량 복합소재의 인장파괴 특성분석 (Tensile Failure Characterization of Composites for Railway Vehicle)

  • 김정국;권성태;김정석;윤혁진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

형상 기억 합금을 이용한 Al기 복합재료 개발 (Development of AI Matrix Composite using Shape Memory Alloy)

  • 정태헌;이동주;김홍건
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.53-62
    • /
    • 1998
  • A simple analytical and finite element(FE) models are used to study the tensile properties of Al matrix composite with continuous TiNi fibers. The effects of residual stresses caused by the shape momory effects have been compared for various mechanical behaviors as a function of fiber volume fraction and degree of pre-strain and fiber configurations. It is found that both the back stress in the Al matrix induced by stiffness of TiNi fibers and the compressive stress in the matrix are caused of the strengthening mechanisms. Both theoretical and analytical results show quite good agreement and are closed to the experimental data except in high volume content.

  • PDF

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

굽힘 및 비틀림 하중작용시 횡방향 모재균열을 갖는 복합재료 판넬 해석 (Analysis of a Composite Panel with Transverse Matrix Cracks under Bending and Twisting Moments)

  • 박정선;허해규;이수용
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.971-980
    • /
    • 1997
  • This study is to investigate the stiffness degradation of a composite laminated panel including transverse matrix cracks subjected to bending and twisting moments. Micromechanics theory on the composite material is derived by introducing crack density. Iterative numerical scheme is developed to calculate the degraded composite stiffness which has nonlinear relation due to the crack density. The finite element method is used for structural analysis of the composite panel. Structural responses of the composite panel are examined for various laminated angles and crack density under the bending and twisting moments. Also, the effect of crack opening and closing is considered in the examination. It is realized that the matrix cracks may cause severe stiffness reduction and should be considered in the composite laminated panel.

$ABO_w/AC4CH$복합재료의 제조 및 기계적 특성 (Manufacture and Mechanical Properties of $ABO_w/AC4CH$ Composite Material)

  • 허선철;박원조;허정원
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.188-194
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potential for demanding mechanical applications including defense, aerospace, and automotive industries. Especially, metal matrix composites, which are reinforced with aluminum borate whisker, have been used for the part of piston head in automobile because of good specific strength and wear resistance. Aluminum alloy-based metal matrix composites with whisker reinforcements have been produced using squeeze casting method, which is kind of an infiltration method. In this study, AC4CH-based metal matrix composites with $Al_{18}B$_4$O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated mechanical properties of matrix and MMC composite were evaluated.

  • PDF

$9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성 (Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH)

  • 박원조;이광영;허선철
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

횡방향 하중을 받는 금속모재 복합재료의 파손구조 (Failure Mechanism of Metal Matrix Composites Subject to Transverse Loading)

  • 함종호;이형일;조종두
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1456-1469
    • /
    • 2000
  • Mechanical behaviors of uniaxially fiber-reinforced metal matrix composites under transverse loading conditions were studied at room and elevated temperatures. A mono-filament composite was selecte d as a representative analysis model with perfectly bonded fiber/matrix interface assumption. The elastic-plastic and visco-plastic models were investigated by both theoretical and numerical methods. The product of triaxiality factor and effective strain as well as stress components and strain energy was obtained as a function of location to estimate the failure sites in fiber-reinforced metal matrix composite. Results showed that fiber/ matrix interfacial debond plays a key role for local failure at the room temperature, while void creation and growth in addition to the interfacial debond are major concerns at the elevated temperature. It was also shown that there would be an optimal diameter of fiber for the strong fiber-reinforced metal matrix composite.

콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용 (Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound)

  • 이동혁;윤진철;이정희;김인섭
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.42-49
    • /
    • 2014
  • The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.