• Title/Summary/Keyword: matrix analysis

Search Result 5,891, Processing Time 0.035 seconds

Fiber-Matrix Interface Characterization through the Microbond Test

  • Sockalingam, Subramani;Nilakantan, Gaurav
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.282-295
    • /
    • 2012
  • Fiber reinforced polymer matrix composites are widely used to provide protection against ballistic impact and blast events. There are several factors that govern the structural response and mechanical properties of a textile composite structure, of which the fiber-matrix interfacial behavior is a crucial determinant. This paper reviews the microbond or microdroplet test methodology that is used to characterize the fiber-matrix interfacial behavior, particularly the interface shear strength (IFSS). The various analytical, experimental, and numerical approaches applied to the microbond test are reviewed in detail.

Analysis of Lipids in Deciduous Teeth by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS)

  • Lee, Yujin;Seo, Eunji;Park, Tae-Min;Bae, Kwang-Hak;Cha, Sangwon
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.105-108
    • /
    • 2017
  • Recently, deciduous teeth have been proposed as a promising biomatrix for estimating internal and external chemical exposures of an individual from prenatal periods to early childhood. Therefore, detection of organic chemicals in teeth has received increasing attention. Organic materials in tooth matrix are mostly collagen type proteins, but lipids and other small organic chemicals are also present in the tooth matrix. In this study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was employed to obtain lipid fingerprints from deciduous teeth. Phospholipids and triacylglcerols (TAGs) from deciduous teeth were successfully detected by MALDI MS with 2,5-dihydroxybenzoic acid (DHB) or gold nanoparticle (AuNP) as a matrix.

Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter (3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션)

  • Lim, Hyun-Joo;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.

An Affordable Implementation of Kalman Filter by Eliminating the Explicit Temporal Evolution of the Background Error Covariance Matrix (칼만필터의 자료동화 활용을 위한 배경오차 공분산의 명시적 시간 진전 제거)

  • Lim, Gyu-Ho;Suh, Ae-Sook;Ha, Ji-Hyun
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In meteorology, exploitation of Kalman filter as a data assimilation system is virtually impossible due to simultaneous requirements of adjoint model and large computer resource. The other substitute of utilizing ensemble Kalman filter is only affordable by compensating an enormous usage of computing resource. Furthermore, the latter employs ensemble integration sets for evolving the background error covariance matrix by compensating the dynamical feature of the temporal evolution of weather conditions. We propose a new implementation method that works without the adjoint model by utilizing the explicit expression of the background error covariance matrix in backward evolution. It will also break a barrier in the evolution of the covariance matrix. The method may be applied with a slight modification to the real time assimilation or the retrospective analysis.

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Generalized optimal active control algorithm with weighting matrix configuration, stability and time-delay

  • Cheng, Franklin Y.;Tian, Peter
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.119-135
    • /
    • 1993
  • The paper presents a generalized optimal active control algorithm for earthquake-resistant structures. The study included the weighting matrix configuration, stability, and time-delays for achieving control effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investigated for which the stability regions are determined. A simplified method for reducing the influence of time-delay on dynamic response is proposed. Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix can be flexibly selected and adjusted at any time during the operation of the control system. The examples also show that the weighting matrix based on pole placement approach is superior to other weighting matrix configurations for its self-adjustable control effectiveness. Using the time-delay correction method can significantly reduce the influence of time-delays on both structural response and required control force.

Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method (웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.

Transmission Matrix Noise Elimination for an Optical Disordered Medium

  • Wang, Lin;Li, Yangyan;Xin, Yu;Wang, Jue;Chen, Yanru
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.496-501
    • /
    • 2019
  • We propose a method to eliminate the noise of a disordered medium optical transmission matrix. Gaussian noise exists whenever light passes through the medium, during the measurement of the transmission matrix and thus cannot be ignored. Experiments and comparison of noise eliminating before and after are performed to illustrate the effectiveness and advance presented by our method. After noise elimination, the results of focusing and imaging are better than the effect before noise elimination, and the measurement of the transmission matrix is more consistent with the theoretical analysis as well.

Torsional Vibration Analysis of Multiple Steped Gear System Using Transfer Matrix Method (전달행렬법을 이용한 다단 치차계의 비틀림 진동 해석)

  • 이형우;박노길
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.504-512
    • /
    • 1998
  • For analyzing the torsional vibration of a multiple stepped gear system containing a pair of triple gears, a transfer matrix model based on Hibner's branch method is developed and the natural properties of the branched rotor system are calculated with using the $\lambda$-matrix formulation. A Campbell diagram, in which the excitation sources caused by the mass unbalances of the rotors and the transmitted errors of thegearings are considered, shows that, at the neighborhood of the operating speed, there are the four critical speeds amplifying the first mode and the fifth mode. For the surpression of the gear box vibration, two ways are suggested by referring the mode shapes.

  • PDF

A study on controller design based on safe Petri Net for discrite system control (비연속시스템제어를 위한 Safe Petri Net에 기초로한 제어기의 구성에 관한 연구)

  • 황창선;이재민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.400-405
    • /
    • 1990
  • This paper deals with the design technique of the controller for the discrete system control using Extended Safe Petri Net which is deduced from Petri Net as its subclass with a specific constraint and which is introduced to develop the design and analysis for the discrete systems. First, we propose a construction matrix suitable for the discrete systems that represent the marking flows which are the dynamic behavior of the discrete systems. Next, we develop a method that can design the controller for the discrete system control by analyzing the proposed construction matrix into the incidence matrix of Extended Safe Petri Net. Finally, the validity of the proposed method is shown by using the incidence matrix and matrix equation of Extended Safe Petri Net model.

  • PDF