• Title/Summary/Keyword: matrix (M) protein

Search Result 339, Processing Time 0.033 seconds

Effects of Conjugated Linoleic Acid (CLA) on Matrix Metalloproteinase (MMP) Activity and Cell Motility in Human Colon Cancer Cell Lines (Conjugated Linoleic Acid (CLA)가 인체 대장암 세포주에서 Matrix Metalloproteinase (MMP) 활성과 세포이동성에 미치는 영향)

  • 설소미;방명희;최옥숙;윤정한;김우경
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.280-286
    • /
    • 2003
  • Conjugated linoleic acid (CLA) consists of several geometric isomers of linoleic acid. CLA is found in foods derived from ruminants and exhibits strong anticarcinogenic effects in a variety of animal models. Matrix metalloproteinases (MMPs) play a key role in cancer progression. Specifically, MMP-2 and -9, which hydrolyze the basal membrane type IV collagen, are involved in the initial breakdown of collagen and basement membrane components during tumor growth and invasion. However, the effects of CLA on cancer cell motility and MMP expression and activity are not currently well known. Therefore, the present study examined whether CLA reduces the activity of MMP and cell motility in SW480 and SW620 cells, the human colon cancer cell lines. Gelatin zymography and Western blot analysis revealed that phorbol 12-myristate 13-acetate (PMA) induced the activity and protein expression of Mr 92,000 MMP-9 in both cell lines. To examine whether CLA inhibits the MMP activity, cells were incubated with 100 ngfmL PMA in the presence of various concentrations of CLA. PMA-induced MMP-9 activity was decreased by 20 $\mu$ M CLA in SW480 cells, and by 10 $\mu$ M and 20 $\mu$ M CLA in SW620 cells. Results from the Hoyden chamber assay showed that cell motility was increased by PMA and that PMA-induced cell motility was significantly decreased by 20 $\mu$ M CLA in SW480 cells. These results indicate that CLA may reduce the motility and MMP activity in human colon cancer cells.

Effect on Inhibition of Matrix Metalloproteinase-1 in Human Dermal Fibroblasts by Production of Exopolysaccharide from Mycelial Culture of Grifola frondosa (잎새버섯이 생산하는 세포외 다당체의 사람 섬유아세포에서 Matrix Metalloproteinase-1 발현저해 효과)

  • Sim Gwan Sub;Bae Jun Tae;Lee Dong Hwan;Kim Jin Hwa;Lee Bum Chun;Choe Tae Boo;Pyo Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.2 s.51
    • /
    • pp.161-167
    • /
    • 2005
  • We investigated the effect on inhibition of matrix metalloproteinase (MMP) in human dermal fibroblast (HDF) by production of exopolysaccharide (GF-glucan) from mycelial culture of Grifola frondosa HB0071. The photoprotective potential of GF-glucan was tested in HDF exposed to ultraviolet-A (UVA) light. It was revealed that GF-glucan had an inhibitory effect on MMP-1 expression in UVA-irradiated HDF without any significant cytotoxicity. The treatment of UVA-irradiated HDF with GF-glucan resulted in a dose-dependent degrease in the expression level of MMP-1 protein and mRNA (by maximum $54.4\%$ at an $0.5\%$ GF-glucan). These results suggest that GF-glucan obtained from mycelial culture of G. frondosa HB0071 may contribute to inhibitory action in photoaging by reducing the MMP-1 related matrix degradation system.

The effects of bone morphogenetic protein-2 and enamel matrix derivative on the bioactivity of mineral trioxide aggregate in MC3T3-E1cells

  • Jeong, Youngdan;Yang, Wonkyung;Ko, Hyunjung;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.3
    • /
    • pp.187-194
    • /
    • 2014
  • Objectives: The effects of bone morphogenetic protein-2 (BMP-2) and enamel matrix derivative (EMD) respectively with mineral trioxide aggregate (MTA) on hard tissue regeneration have been investigated in previous studies. This study aimed to compare the osteogenic effects of MTA/BMP-2 and MTA/EMD treatment in MC3T3-E1 cells. Materials and Methods: MC3T3-E1 cells were treated with MTA (ProRoot, Dentsply), BMP-2 (R&D Systems), EMD (Emdogain, Straumann) separately and MTA/BMP-2 or MTA/EMD combination. Mineralization was evaluated by staining the calcium deposits with alkaline phosphatase (ALP, Sigma-Aldrich) and Alizarin red (Sigma-Aldrich). The effects on the osteoblast differentiation were evaluated by the expressions of osteogenic markers, including ALP, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN) and osteonectin (OSN), as determined by reverse-transcription polymerase chain reaction analysis (RT-PCR, AccuPower PCR, Bioneer). Results: Mineralization increased in the BMP-2 and MTA/BMP-2 groups and increased to a lesser extent in the MTA/EMD group but appeared to decrease in the MTA-only group based on Alizarin red staining. ALP expression largely decreased in the EMD and MTA/EMD groups based on ALP staining. In the MTA/BMP-2 group, mRNA expression of OPN on day 3 and BSP and OCN on day 7 significantly increased. In the MTA/EMD group, OSN and OCN gene expression significantly increased on day 7, whereas ALP expression decreased on days 3 and 7 (p < 0.05). Conclusions: These results suggest the MTA/BMP-2 combination promoted more rapid differentiation in MC3T3-E1 cells than did MTA/EMD during the early mineralization period.

Effect of Asterina pectinifera on Activities of Breast Cancer Chemopreventive and Metastatic Enzymes (별불가사리 단백추출물이 유방암예방 및 전이억제 효소계에 미치는 영향)

  • Nam, Kyung-Soo;Kim, Mee-Kyung;Cho, Hyun-Jung;Shon, Yun-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.193-197
    • /
    • 2006
  • The effect of protein extract from Asterina pectinifera on breast cancer chemopreventive (aromatase and cyclooxygenase-2) and metastatic (matrix metalloproteinase) enzymes was tested. Protein extract from A. pectinifera was capable of suppressing aromatase in a human placenta microsomal assay. Cyclooxygenase-2 (COX-2) activity was significantly inhibited by the protein extract from A. pectinifera at concentrations of 10, 20 and $40{\mu}g/m{\ell}$. The extract markedly reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated matrix metalloproteinase (MMP)-9 activity. These results suggest that A. pectinifera could be of therapeutic value in preventing human breast cancer.

  • PDF

NOD2 signaling pathway is involved in fibronectin fragment-induced pro-catabolic factor expressions in human articular chondrocytes

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.373-378
    • /
    • 2019
  • The nucleotide-binding and oligomerization domain (NOD) is an innate pattern recognition receptor that recognizes pathogen- and damage-associated molecular patterns. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) is a matrix degradation product found in the synovial fluids of patients with osteoarthritis (OA). We investigated whether NOD2 was involved in 29-kDa FN-f-induced pro-catabolic gene expression in human chondrocytes. The expression of mRNA and protein was measured using quantitative real-time polymerase chain reaction (qrt-PCR) and Western blot analysis. Small interfering RNAs were used for knockdown of NOD2 and toll-like receptor 2 (TLR-2). An immunoprecipitation assay was performed to examine protein interactions. The NOD2 levels in human OA cartilage were much higher than in normal cartilage. NOD1 and NOD2 expression, as well as pro-inflammatory cytokines, including interleukin-1beta (IL-$1{\beta}$) and tumor necrosis factor-alpha (TNF-${\alpha}$), were upregulated by 29-kDa FN-f in human chondrocytes. NOD2 silencing showed that NOD2 was involved in the 29-kDa FN-f-induced expression of TLR-2. Expressions of IL-6, IL-8, matrix metalloproteinase (MMP)-1, -3, and -13 were also suppressed by TLR-2 knockdown. Furthermore, NOD2 and TLR-2 knockdown data demonstrated that both NOD2 and TLR-2 modulated the expressions of their adaptors, receptorinteracting protein 2 (RIP2) and myeloid differentiation 88, in 29-kDa FN-f-treated chondrocytes. 29-kDa FN-f enhanced the interaction of NOD2, RIP2 and transforming growth factor beta-activated kinase 1 (TAK1), an indispensable signaling intermediate in the TLR-2 signaling pathway, and activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$), subsequently leading to increased expressions of pro-inflammatory cytokines and cartilage-degrading enzymes. These results demonstrate that 29-kDa FN-f modulated pro-catabolic responses via cross-regulation of NOD2 and TLR-2 signaling pathways.

Effects of Ethyl Acetate Fraction from Melothria Heterophylla on Antioxidant Activity and Matrix Metalloproteinase-1 Expression in Ultraviolet A-irradiated Human Dermal Fibroblasts (백렴 에틸 아세테이트 층의 항산화 활성과 Matrix Metalloproteinase-1 발현 저해효과)

  • Cho, Young-Ho;;Sim, Gwan-Sub;Lee, Dong-Hwan;Lee, Bum-Chun;Pyo, Heong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.103-109
    • /
    • 2005
  • UV irradiation leads to distinct changes in skin connective tissue, which is degradation of collagen. Many of these alterations in the extracellular matrix are mediated by matrix metalloproteinases. In this study, to develop a new anti-aging agent, we screened the antioxidant activity of solvent fractions from ethanolic extract of Melothria Heterophylla. Among the four solvent fractions tested, the EtOAc fraction exhibited the highest antioxidant activity. It was investigated the inhibitory effect of the EtOAc fraction on the expression and activity of MMP-1 in UVA-irradiated human dermal fibroblasts. The EtOAc fraction inhibited the activity of MMP-1 in a dose dependent manner with the $IC_{50}$ values of $9{\mu}g/mL$. Also, UVA-induced MMP-1 expression was reduced about $90\%$ by $100{\mu}g/mL$ of the EtOAc fraction but MMP-1 mRNA expression was not inhibited. Therefore, we conclude that the EtOAc fraction significantly inhibits MMP-1 expression at the protein level. From these results, we suggest that the EtOAc fraction from M. heterophylla could be used as a new anti-aging agent for the photo-damaged skin.

Influence of Anodic Oxidation Film Formed on Titanium onto Cell Attachment and Proliferation (양극 산화에 의해 티타늄 표면에 형성된 산화 피막이 세포 부착 및 성장에 미치는 영향)

  • Noh, Se-Ra;Lee, Yong-Ryeol;Song, Ho-Jun;Park, Yeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.606-613
    • /
    • 2006
  • This study was purposed to evaluate the influence of anodically oxidized film on titanium (Ti) onto MG-63 osteoblast-like cell attachment and activity. Only scratch lines created by polishing were seen in ASR and ANO-1 groups. About $1.5{\mu}m$-thick homogeneous oxide film which has pores of about $0.5{\mu}m$ diameter were formed in ANO-12. The crystalline structure of the oxide films formed by anodization in phosphoric acid electrolyte was $TiP_2O_7$. The total protein amounts of ANO-1 and ANO-12 groups showed higher values of maximum protein amount than that of AS-R group. At 3 days of incubation, total protein amount showed higher value in ANO-2 when comparing to that of AS-R (p<0.05). Based on the results of ALPase activity test, the degree of MG-63 cell differentiation for initial mineralization matrix formation was similar. For all the test groups after 1 day of incubation, MG-63 cells grew healthily in mono-layer with dendritic extensions. After incubation for 3 days, the specimen surfaces were covered more densely by cells, and numerous micro filaments were extruding to the extracellular matrix.

Diphlorethohydroxycarmalol Suppresses Ultraviolet B-Induced Matrix Metalloproteinases via Inhibition of JNK and ERK Signaling in Human Keratinocytes

  • Piao, Mei Jing;Kumara, Madduma Hewage Susara Ruwan;Kim, Ki Cheon;Kang, Kyoung Ah;Kang, Hee Kyoung;Lee, Nam Ho;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.557-563
    • /
    • 2015
  • Skin aging is the most readily observable process involved in human aging. Ultraviolet B (UVB) radiation causes photo-oxidation via generation of reactive oxygen species (ROS), thereby damaging the nucleus and cytoplasm of skin cells and ultimately leading to cell death. Recent studies have shown that high levels of solar UVB irradiation induce the synthesis of matrix metalloproteinases (MMPs) in skin fibroblasts, causing photo-aging and tumor progression. The MMP family is involved in the breakdown of extracellular matrix in normal physiological processes such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes such as arthritis and metastasis. We investigated the effect of diphlorethohydroxycarmalol (DPHC) against damage induced by UVB radiation in human skin keratinocytes. In UVB-irradiated cells, DPHC significantly reduced expression of MMP mRNA and protein, as well as activation of MMPs. Furthermore, DPHC reduced phosphorylation of ERK and JNK, which act upstream of c-Fos and c-Jun, respectively; consequently, DPHC inhibited the expression of c-Fos and c-Jun, which are key components of activator protein-1 (AP-1, up-regulator of MMPs). Additionally, DPHC abolished the DNA-binding activity of AP-1, and thereby prevented AP-1-mediated transcriptional activation. These data demonstrate that by inactivating ERK and JNK, DPHC inhibits induction of MMPs triggered by UVB radiation.

Matrix metalloproteinase-13 downregulation and potential cartilage protective action of the Korean Red Ginseng preparation

  • Lee, Je Hyeong;Shehzad, Omer;Ko, Sung Kwon;Kim, Yeong Shik;Kim, Hyun Pyo
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2015
  • Background: The present study was designed to prepare and find the optimum active preparation or fraction from Korea Red Ginseng inhibiting matrix metalloproteinase-13 (MMP-13) expression, because MMP-13 is a pivotal enzyme to degrade the collagen matrix of the joint cartilage. Methods: From total red ginseng ethanol extract, n-BuOH fraction (total ginsenoside-enriched fraction), ginsenoside diol-type-enriched fraction (GDF), and ginsenoside triol-type-enriched fraction (GTF) were prepared, and ginsenoside diol type-/F4-enriched fraction (GDF/F4) was obtained from Panax ginseng leaf extract. Results: The n-BuOH fraction, GDF, and GDF/F4 clearly inhibited MMP-13 expression compared to interleukin-$1{\beta}$-treated SW1353 cells (human chondrosarcoma), whereas the total extract and ginsenoside diol-type-enriched fraction did not. In particular, GDF/F4, the most effective inhibitor, blocked the activation of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun-activated protein kinase (JNK), and signal transducer and activator of transcription-1/2 (STAT-1/2) among the signal transcription pathways involved. Further, GDF/F4 also inhibited the glycosaminoglycan release from interleukin-$1{\alpha}$-treated rabbit cartilage culture (30.6% inhibition at $30{\mu}g/mL$). Conclusion: Some preparations from Korean Red Ginseng and ginseng leaves, particularly GDF/F4, may possess the protective activity against cartilage degradation in joint disorders, and may have potential as new therapeutic agents.

Effects of Dietary Protein on the Progression of Early Chronic Renal Failure in Subtotally Nephrectomizid Rats (저단백식이의 투여가 만성신부전증의 진행에 미치는 영향에 관한 실험적 연구)

  • Kim, Kyo-Sun;Kim, Kee-Hyuk;Kim, Sang-Yun;Kang, Yong-Joo;Maeng, Won-Jae
    • Childhood Kidney Diseases
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 1999
  • Purpose : The protective effects of dietary protein on the progression of renal failure were studied in subtotally nephrectomized rats. Methods : Treatment groups were as follows; 5/6 nephrectomy and a normal protein ($18.5\%$) diet (NP); 5/6 nephrectomy and a low protein ($6\%$) diet (LP): 5/6 nephrectomy, a normal protein diet and converting enzyme inhibitor, enalapril (NPE): 5/6 nephrectomy, a low protein diet and enalapril (LPE). Both diets were isocaloric and had the same phosphorus content. Proteinuria, remnant kidney weight, mesangial matrix expansion score and glomerular volume were assessed at 4, 12 and 16 weeks after renal ablation. Results : LP and NP developed progressive hypertension. Eight weeks after surgery, LPE and NPE controlled hypertension. LP, LPE, and NPE had significantly less proteinuria than NP at 16 weeks (P<0.05). Kidney weight in LP were markedly less enlarged than NP (P<0.05). There was no difference in kidney weight between LPE and NPE. At 12 and 16 weeks the mesangial matrix expansion score was significantly less in LP, LPE, and NPE compared to NP (P<0.05). At 12 and 16 weeks mean glomerular volume was significantly less in LP compared to NP (P<0.05). At 12 and 16 weeks mean glomerular volume in LPE was significantly less compared to NPE. Conclusion : Dietary protein restriction afforded considerable protection from renal injury in the rat remnant kidney model. During the enalapril treatment, there was no additional protective effect of dietary protein restriction against the development of renal lesions.

  • PDF