• Title/Summary/Keyword: mathematics class

Search Result 2,434, Processing Time 0.026 seconds

Implementation of the Unborrowed Book Recommendation System for Public Libraries: Based on Daegu D Library (공공도서관 미대출 도서 추천시스템 구현 : 대구 D도서관을 중심으로)

  • Jin, Min-Ha;Jeong, Seung-Yeon;Cho, Eun-Ji;Lee, Myoung-Hun;Kim, Keun-Wook
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.175-186
    • /
    • 2021
  • The roles and functions of domestic public libraries are diversifying, but various problems have emerged due to internally biased book lending. In addition, due to the 4th Industrial Revolution, public libraries have introduced a book recommendation system focusing on popular books, but the variety of books that users can access is limited. Therefore, in this study, the public library unborrowed book recommendation system was implemented limiting its spatial scope to Duryu Library in Daegu City to enhance the satisfaction of public library users, by using the loan records data (213,093 cases), user information (35,561 people), etc. and utilizing methods like cluster analysis, topic modeling, content-based filtering recommendation algorithm, and conducted a survey on actual users' satisfaction to present the possibility and implications of the unborrowed book recommendation system. As a result of the analysis, the majority of users responded with high satisfaction, and was able to find the satisfaction was relatively high in the class classified by specific gender, age, occupation, and usual reading. Through the results of this study, it is expected that some problems such as biased book lending and reduced operational efficiency of public libraries can be improved, and limitations of the study was also presented.

Development and Application of Middle School STEAM Program Using Big Data of World Wide Telescope (WWT 빅데이터를 활용한 중학교 STEAM 프로그램 개발 및 적용)

  • You, Samgmi;Kim, Hyoungbum;Kim, Yonggi;Kim, Heoungtae
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.1
    • /
    • pp.33-47
    • /
    • 2021
  • This study developed a big data-based STEAM (Science, Technology, Engineering, Art & Mathematics) program using WWT (World Wide Telescope), focusing on content elements of 'solar system', 'star and universe' in the 2015 revised science curriculum, and in order to find out the effectiveness of the STEAM program, analyzed creative problem solving, STEAM attitude, and STEAM satisfaction by applying it to one middle school 176 students simple random sampled. The results of this study are as follows. First, we developed a program to encourage students to actively and voluntarily participating, utilizing the astronomical data platform WWT. Second, in the paired t-test based on the difference between the pre- and post-scores of the creative problem solving measurement test, significant statistical test results were shown in 'idea adaptation', 'imaging', 'analogy', 'idea production' and 'elaboration' sub-factors except 'attention task' sub-factor (p < .05). Third, in the paired t-test based on the difference between the pre- and post-scores of the STEAM attitude test, significant statistical test results were shown in 'interest', 'communication', 'self-concept', 'self-efficacy' and 'science and engineering career choice' sub-factors except 'consideration' and 'usefulness / value recognition' sub-factors (p < .05). Fourth, in the STEAM satisfaction test conducted after class application, the average values of sub-factors were 3.16~3.90. The results indicated that students' understanding and interest in the science subject improved significantly through the big data-based STEAM program using the WWT.

Exploring Teachers' Perceptions of Computational Thinking Embedded in Professional Development Program (컴퓨팅 사고를 반영한 교사연수 과정에서 나타난 교사의 인식 탐색)

  • Hwang, Gyu Jin;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.344-364
    • /
    • 2021
  • The study explored how two elementary school teachers perceived computational thinking, reflected them into curriculum revision, and taught them in the classroom during longitudinal professional developed program (PDP) for nine months. Computational thinking is a new direction in educational policy-making including science education; therefore we planned to investigate participating teachers' perception of computational thinking to provide their fundamental understandings. Nine meetings, lasting about two hours each, were held with the participating teachers and they developed 11 lesson plans for one unit each, as they formed new understandings about computational thinking. Data were collected through PDP program while two teachers started perceiving computational thinking, revising their curriculum, and implementing it into their class for nine months. The results were as follows; first, elementary school teachers' perception of computational thinking was that the definition of scientific literacy as the purpose of science education was extended, i.e., it refers to scientific literacy to prepare students to be creative problem solvers. Second, STEAM (science, technology, engineering, arts, and mathematics) lessons were divided into two stages; concept formation stage where scientific thinking is emphasized, and concept application, where computational thinking is emphasized. Thirdly, computational thinking is a cognitive thinking process, and ICT (informational and communications technology) is a functional tool. Fourth, computational thinking components appear repeatedly and may not be sequential. Finally, STEAM education can be improved by utilizing computational thinking. Based on this study, we imply that STEAM education can be activated by computational thinking when teachers are equipped with competencies of understanding and implementing computational thinking within the systematic PDPs, which is very essential for newly policies.

An Analysis of Teachers' Knowledge on the Strategies for Understanding and Solving Equations by Fourth Graders (초등학교 4학년 학생들의 등식 이해 및 해결 전략에 대한 교사의 지식 분석)

  • Pang, JeongSuk;Lee, Yujin
    • The Mathematical Education
    • /
    • v.61 no.1
    • /
    • pp.109-126
    • /
    • 2022
  • The purpose of this study is to explore how well teachers anticipate students to understand and solve equations. For this purpose, a questionnaire of the equal sign was developed, and 20 fourth-grade classes were selected as research participants. Teachers in each class were asked to predict various strategies on how their own students would respond to the questionnaire, and a total of 450 students from the 20 classes solved the questionnaire. As a result of the analysis, the teachers could predict students' computational strategies and relational strategies easily but did not fully understand that some students used both strategies or employed incorrect computational or relational strategies. The students tended to use relational strategies better than the teachers expected. They also employed operational strategies more often than the teachers expected. The teachers predicted that students' strategies would be influenced by the types of the problems such as equation-structure items and equation-solving items, whereas the students were more influenced by the forms of equations in the problems. Based on these results, several implications for the knowledge to which teachers needed to attend were discussed so that elementary school students could enhance the relational understanding of the equal sign.

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

Development of Applied Music Education Program for Creative and Convergent Thinking-With a Focus on the Capstone design Class (창의·융합적 사고를 위한 실용음악 교육프로그램 개발-캡스톤디자인 수업을 중심으로)

  • Yun, Sung-Hyo;Han, Kyung-hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.285-294
    • /
    • 2024
  • This study aims to enhance learners' creative and integrative thinking through the use of a practical music education program, facilitating high-quality artistic activities and the integration of various disciplines. To achieve this, a practical music education program incorporating the PDIE model was designed, and the content validity of the developed program was verified. Through this process, We have researched and described methodologies for multidisciplinary research that can be applied in practical music education. This paper focuses on the fourth session of the study, which deals with the creative and integrative education of practical music and mathematics. The mathematical theory of interest in this research is the Fibonacci sequence, fundamental to the golden ratio in art. The goal is to enable balanced and high-quality creative activities through learning and applying the Fibonacci sequence. Additionally, to verify the validity and effectiveness of the instructional plan, including the one used in the 15-week course, we have detailed the participants involved in the content validation, the procedures of the research, the research tools used, and the methods for collecting and analyzing various data. Through this, We have confirmed the potential of creative and integrative education in higher practical music education and sought to develop educational methodologies for cultivating various creative talents in subsequent research.

The Effect of Integrated Mind Map Activities on the Creative Thinking Skills of 2nd Year Students in Junior High School (통합형 마인드맵 활동이 중학교 2학년 학생들의 창의적 사고력에 미치는 영향)

  • Yoon, Hyunjung;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.164-178
    • /
    • 2015
  • The purpose of this study was to design a teaching and learning method conductive to the development of creative thinking skills and investigate its effects. It has been developed integrated mind map with feature of visualizing the divergent thinking to the aspects of Science (S), Technology (T) & Engineering (E), Arts (A), Mathematics (M). Integrated mind map can be divided into four types of STEAM type, STEA type, STEM type, STE type depending on the category of key words in the first branch. And Integrated mind map can be divided into three levels of guided, intermediate, open depending on the teacher's guide degree. And also integrated mind map activities were carried out in the form of group, class share as well as individual. This study was implemented during a semester and students in experiment group experienced individual-integrated mind map activity 10 times, group-integrated mind map activity 10 times, class share-integrated mind map activity 3 times. The results indicated that the experimental group presented statistically meaningful improvement in creative thinking skills (p<.05). And there was a statistically meaningful improvement in fluency, flexibility, originality as a sub-category of creative thinking skills(p <.05). Also creative thinking skills are not affected by the level of cognitive, academic performance, gender (p<.05). In conclusion, it was found that 'integrated mind map activity' improved student's creative thinking skills. There was no interaction effect about creative thinking skills between the teaching strategy and cognitive level, achivement, gender of those students.

The Development and Application of Girih tiling Program for the Math-Gifted Student in Elementary School (Girih 타일링을 이용한 초등수학영재 프로그램 개발 및 적용 연구)

  • Park, Hye-Jeong;Cho, Young-Mi
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.619-637
    • /
    • 2012
  • The purpose of this study is to develop a new program for elementary math-gifted students by using 'Girih Tililng' and apply it to the elementary students to improve their math-ability. Girih Tililng is well known for 'the secrets of mathematics hidden in Mosque decoration' with lots of recent attention from the world. The process of this study is as follows; (1) Reference research has been done for various tiling theories and the theories have been utilized for making this study applicable. (2) The characteristic features of Mosque tiles and their basic structures have been analyzed. After logical examination of the patterns, their mathematic attributes have been found out. (3) After development of Girih tiling program, the program has been applied to math-gifted students and the program has been modified and complemented. This program which has been developed for math-gifted students is called 'Exploring the Secrets of Girih Hidden in Mosque Patterns'. The program was based on the Renzulli's three-part in-depth learning. The first part of the in-depth learning activity, as a research stage, is designed to examine Islamic patterns in various ways and get the gifted students to understand and have them motivated to learn the concept of the tiling, understanding the characteristics of Islamic patterns, investigating Islamic design, and experiencing the Girih tiles. The second part of the in-depth learning activity, as a discovery stage, is focused on investigating the mathematical features of the Girih tile, comparing Girih tiled patterns with non-Girih tiled ones, investigating the mathematical characteristics of the five Girih tiles, and filling out the blank of Islamic patterns. The third part of the in-depth learning activity, as an inquiry or a creative stage, is planned to show the students' mathematical creativity by thinking over different types of Girih tiling, making the students' own tile patterns, presenting artifacts and reflecting over production process. This program was applied to 6 students who were enrolled in an unified(math and science) gifted class of D elementary school in Daejeon. After analyzing the results produced by its application, the program was modified and complemented repeatedly. It is expected that this program and its materials used in this study will guide a direction of how to develop methodical materials for math-gifted education in elementary schools. This program is originally developed for gifted education in elementary schools, but for further study, it is hoped that this study and the program will be also utilized in the field of math-gifted or unified gifted education in secondary schools in connection with 'Penrose Tiling' or material of 'quasi-crystal'.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

A longitudinal analysis of high school students' dropping out: Focusing on the change pattern of dropout, changes in school violence and school counseling. (전국 고등학교 학생의 학업중단에 대한 종단적 분석 -학업중단 변화양상에 따른 유형탐색, 학교폭력 및 학교상담의 변화추이를 중심으로-)

  • Kwon, Jae-Ki;Na, Woo-Yeol
    • Journal of the Korean Society of Child Welfare
    • /
    • no.59
    • /
    • pp.209-234
    • /
    • 2017
  • This study viewed schools as a cause of students dropping out and posited that dropping out of high school would vary depending on the characteristics and influencing factors of the school from which students were dropping out. Therefore, focusing on schools, we longitudinally investigated the change patterns of school dropout across high schools in the country, and the types of changes in dropping out of high school. In addition, we predicted the general characteristics of schools according to the type of school students were dropping out from, looked at the changes in the major factors (i.e., school violence and school counseling) affecting school dropout, and reviewed schools' long-term efforts and outcomes in relation to school dropout. For this purpose, KERIS EDSS's "Secondary School Information Disclosure Data" were used. The final model included data collected five years20122016) from high schools across the country. The results were as follows. First, in order to examine the longitudinal change patterns of dropping out of high schools, a latent growth models analysis was conducted, and it revealed that, as time passed, the dropout rate decreased. Second, growth mixture modeling was used to explore types according to the change patterns of the school students were dropping out from. The results showed three types: the "remaining in school" type, the "gradually decreasing school dropout" type, and the "increasing school dropping out". Third, the multinomial logistic regression was conducted to predict the general characteristics of schools by type. The results showed that public schools, vocational schools, and schools with a large number of students who have below the basic levels in Korean, English and mathematics were more likely to belong to the "increasing school dropout" type. Further, the larger the total number of students, the higher the probability of belonging to the "remaining in school" type or the "gradually decreasing school dropout" type. Lastly, growth mixture modeling was used to analyze the trend of school violence and school counseling according to the three types. The focus was on the "gradually decreasing school dropout" type. In the case of the "gradually decreasing school dropout" type, it was found that as time passed, the number of school violence cases and the number of offenders gradually decreased. In addition, in terms of change in school counseling the results revealed that the number of placement of professional counselors in schools increased every year and peer counseling was continuously promoted, which may account for the "gradually decreasing school dropout" type.