• Title/Summary/Keyword: mathematically gifted elementary students

Search Result 22, Processing Time 0.047 seconds

Mathematical Reasoning Ability and Error Comparison through the Descriptive Evaluation of Mathematically Gifted Elementary Students and Non-Gifted Students (초등수학영재와 일반학생의 서술형 평가를 통한 수학적 추론 능력 및 오류 비교)

  • Kim, Dong Gwan;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.123-148
    • /
    • 2014
  • The purpose of this study is to figure out the perceptional characteristics of mathematically gifted elementary students by comparing the mathematical reasoning ability and errors between mathematically gifted elementary students and non-gifted students. This research has been targeted at 63 gifted students from 5 elementary schools and 63 non-gifted students from 4 elementary schools. The result of this research is as follows. First, mathematically gifted elementary students have higher inductive reasoning ability compared to non-gifted students. Mathematically gifted elementary students collected proper, accurate, systematic data. Second, mathematically gifted elementary students have higher inductive analogical ability compared to non-gifted students. Mathematically gifted elementary students figure out structural similarity and background better than non-gifted students. Third, mathematically gifted elementary students have higher deductive reasoning ability compared to non-gifted students. Zero error ratio was significantly low for both mathematically gifted elementary students and non-gifted students in deductive reasoning, however, mathematically gifted elementary students presented more general and appropriate data compared to non-gifted students and less reasoning step was achieved. Also, thinking process was well delivered compared to non-gifted students. Fourth, mathematically gifted elementary students committed fewer errors in comparison with non-gifted students. Both mathematically gifted elementary students and non-gifted students made the most mistakes in solving process, however, the number of the errors was less in mathematically gifted elementary students.

  • PDF

Comparative Study between Mathematically Gifted Elementary Students and Common Students in Self-Efficacy and Career Attitude Maturity (초등수학영재와 일반학생의 자기효능감과 진로태도성숙과의 관계 비교)

  • Lee, Jung Hwa;Ryu, Sung Rim
    • Communications of Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.63-80
    • /
    • 2013
  • Reflecting the recent trends and needs of gifted education, this study set out to compare and analyze mathematically gifted elementary students and common students in self-efficacy and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both the groups. The subjects include 237 mathematically gifted elementary students and 221 common students in D Metropolitan City. The research findings were as follows: First, mathematically gifted elementary students turned out to have higher self-efficacy than common students at the significance level of .01 in the three self-efficacy subfactors, namely confidence, self-regulated efficacy, and task difficulty preference. The findings indicate that mathematically gifted elementary students have much confidence in themselves and strong faith in themselves, thus forming a habit of preferring a relatively high-level task by taking self-management and task difficulty into proper consideration. Second, mathematically gifted elementary students showed higher overall career attitude maturity than common students. There was significant difference at the significance level of .01 in decisiveness and preparedness between the two groups and significant difference at the significance level of .05 in assertiveness. However, there was no statistically significant difference in purposefulness and independence between the two groups. Finally, there were positive correlations at the significance level of .01 between all the subfactors of self-efficacy and those of career attitude maturity in all the subjects except for self-regulated efficacy and purposefulness, between which there were positive correlations at the significance level of .05. The mathematically gifted elementary students showed positive correlations between more subfactors of self-efficacy and career attitude maturity than common students. Given those findings, it is necessary to take differences in self-efficacy and career attitude maturity between mathematically gifted elementary students and common students into account when organizing and running a curriculum. The findings confirm the importance of providing students with various experiences fit for them and point to a need for helping mathematically gifted elementary students maintain a high level of self-efficacy and guiding them through career education with more appropriate career attitude maturity improvement programs.

Application of '圓容三方互求' as a Mathematically Challenging Problem for Mathematically Gifted Elementary Students (초등 수학영재의 도전적 문제 상황을 위한 원용삼방호구(圓容三方互求)의 활용)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2016
  • This study focused on the selection and application of mathematical problems to provide mathematically challenging tasks for the gifted elementary students. For the selection, a mathematical problem from <算術管見> of Joseon dynasty, '圓容三方互求', was selected, considering the participants' experiences of problem solving and the variety of approaches to the problem. For the application, teaching strategies such as individual problem solving and sharing of the solving methods were used. The problem was provided for 13 mathematically gifted elementary students. They not only solved it individually but also shared their approaches by presentations. Their solving and sharing processes were observed and their results were analyzed. Based on this, some didactical considerations were suggested.

The Relationship between Mathematically Gifted Elementary Students' Math Creative Problem Solving Ability and Metacognition (초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계)

  • Shin, Seung Yoon;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.17 no.2
    • /
    • pp.95-111
    • /
    • 2014
  • The purpose of this study is to determine the relationship between metacognition and math creative problem solving ability. Specific research questions set up according to the purpose of this study are as follows. First, what relation does metacognition has with creative math problem-solving ability of mathematically gifted elementary students? Second, how does each component of metacognition (i.e. metacognitive knowledge, metacognitive regulation, metacognitive experiences) influences the math creative problem solving ability of mathematically gifted elementary students? The present study was conducted with a total of 80 fifth grade mathematically gifted elementary students. For assessment tools, the study used the Math Creative Problem Solving Ability Test and the Metacognition Test. Analyses of collected data involved descriptive statistics, computation of Pearson's product moment correlation coefficient, and multiple regression analysis by using the SPSS Statistics 20. The findings from the study were as follows. First, a great deal of variability between individuals was found in math creative problem solving ability and metacognition even within the group of mathematically gifted elementary students. Second, significant correlation was found between math creative problem solving ability and metacognition. Third, according to multiple regression analysis of math creative problem solving ability by component of metacognition, it was found that metacognitive knowledge is the metacognitive component that relatively has the greatest effect on overall math creative problem-solving ability. Fourth, results indicated that metacognitive knowledge has the greatest effect on fluency and originality among subelements of math creative problem solving ability, while metacognitive regulation has the greatest effect on flexibility. It was found that metacognitive experiences relatively has little effect on math creative problem solving ability. This findings suggests the possibility of metacognitive approach in math gifted curricula and programs for cultivating mathematically gifted students' math creative problem-solving ability.

Development and Application of a Program Using Sphinx Puzzle for the Mathematically Gifted Elementary Students (초등수학영재를 위한 스핑크스 퍼즐 프로그램 개발과 적용사례)

  • Hwang, Ji Nam
    • Journal of Gifted/Talented Education
    • /
    • v.27 no.1
    • /
    • pp.37-57
    • /
    • 2017
  • In terms of making more various geometrical figures than existing Tangram, Sphinx Puzzle has been used as a material for the gifted education. The main research subject of this paper is to verify how many convex polygons can be made by all pieces of a Sphinx Puzzle. There are several previous researches which dealt with this research subject, but they did not account for the clear reasons on the elementary level. In this thesis, I suggest using unit area and minimum area which can be proved on the elementary levels to account for this research subject. Also, I composed the program for the mathematically gifted elementary students, regarding the subject. I figured out whether they can make the mathematical justifications. I applied this program for three 6th grade students who are in the gifted class of the G district office of education. As a consequence, I found that it is possible for some mathematically gifted elementary students to justify that the number of convex polygons that can be made by a Sphinx Puzzle is at best 27 on elementary level.

Comparative Study between Mathematically Gifted Elementary Students and Non-Gifted Students in Communication Skills and Self-Directed Learning Ability (초등수학영재와 일반학생의 의사소통 능력 및 자기주도적 학습능력 비교)

  • Lee, Hye Ryeong;Choi, Jae Ho
    • School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.585-601
    • /
    • 2013
  • The purpose of this study is to investigate the relationship of communication skills and self-directed learning ability between mathematically gifted elementary students and non-gifted students. The subjects include 126 mathematically gifted elementary students from gifted education centers and gifted classes in elementary schools in D Metropolitan City and 124 non-gifted students that were non categorized as gifted students or special children in the same city. Employed in the study were the tests of communication skills and self-directed learning ability. Through this study, there are notable differences in communication skills and self-directed learning ability between mathematically gifted students and non-gifted students. Thus, those communication skills and self-directed learning ability should be taken into account when organizing and running a curriculum. In addition, developing a program for mathematically gifted students, as well as in teaching and learning communication skills and self-directed learning ability sufficient to consider the interrelationships between.

  • PDF

An Analysis on the Effect of Independent Study Project Learning on Self-Directed Learning Ability and Mathematical Self-Efficacy of the Mathematically Gifted Elementary Students (독자적 연구 프로젝트 학습이 초등수학영재의 자기주도적 학습능력과 수학적 자기효능감에 미치는 영향 분석)

  • Goo, Jong Seo;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.2
    • /
    • pp.205-230
    • /
    • 2015
  • The purpose of this study is, targeting 5th and 6th grades mathematically gifted elementary students, to analyze the effect of independent study project learning on self-directed learning ability and mathematical self-efficacy, and based on the results, examine the implications that independent study project learning has in special education for the gifted. In order to solve the study problems, 5th grade mathematically gifted elementary students(40) and 6th grade mathematically gifted elementary students(39) who had passed the selection criteria of D education institute for the gifted and had been receiving special education for the gifted were selected. The study results are as below. First, although self-directed learning ability had no significant difference at p<0.05, it statistically had some differences in averages between pre-test and post-test results. Second, although mathematical self-efficacy had no significant difference at p<0.05, it statistically had some differences in averages between pre-test and post-test results. Third, in the aspects of self-directed learning ability and mathematical self-efficacy, independent study project learning had a more positive effect on 5th grade mathematically gifted elementary students than 6th grade mathematically gifted elementary students. In addition, it had significant differences in 'the level of mathematical tasks', a sub-level of mathematical self-efficacy, and 'the openness of learning', 'the initiative of learning', and 'a sense of responsibility for learning', sub-levels of self-directed learning ability. These results imply that independent study project learning has a positive effect on self-directed learning ability and mathematical self-efficacy of mathematically gifted elementary students so that it could be meaningfully used as a teaching method for special education for the gifted at educational sites of independent study project learning.

The Relationship between Family System and Career Attitude Maturity of Mathematically Gifted and Non-Gifted Elementary Students (초등수학영재와 일반학생의 가족체계와 진로태도성숙에 대한 관계 분석)

  • Jang, Kyung Ja;Choi, Jae Ho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2013
  • The object of this study is to compare and analyze mathematically gifted and non-gifted elementary students in the family system and career attitude maturity, understand the characteristics of the former, and provide assistance for career education for both groups. The subjects include 145 mathematically gifted elementary students (73 fifth graders, 72 sixth graders) and 167 non-gifted students (78 fifth graders, 89 sixth graders) in G educational agencies. Materials for the experiment include amended family system test and career attitude maturity test. While t-test was conducted to solve the first research question, Pearson's correlation analysis was performed to solve the other one. The research findings were as follows: First, mathematically gifted elementary students, compared to non-gifted students, turned out to have higher rates of the family system and career attitude maturity rate and showed statistically meaningful positive relationship. Second, the lower components of the family system and career attitude maturity, there seems to be no relationship between family-flexibility and finality. However, among other components, there was a level of significance at 5% which shows statistically meaningful positive relationship. In summary, this found that the family system is able to have an effect on the career attitude maturity for both mathematically gifted elementary students and non-gifted students. Hence, it need to be considered the components of family system when the teacher guides mathematically gifted elementary students and non-gifted students associated with their career.

  • PDF

The Strategic Thinking of Mathematically Gifted Elementary Students in LOGO Project Learning (LOGO를 이용한 프로젝트 학습에서 나타난 초등 수학영재 학생들의 전략적 사고)

  • Lew, Hee-Chan;Jang, In-Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.4
    • /
    • pp.459-476
    • /
    • 2010
  • The purpose of this study is to suggest a new direction in using LOGO as a gifted education program and to seek an effective approach for LOGO teaching and learning, by analyzing the strategic thinking of mathematically gifted elementary students. This research is exploratory and inquisitive qualitative inquiry, involving observations and analyses of the LOGO Project learning process. Four elementary students were selected and over 12 periods utilizing LOGO programming, data were collected, including screen captures from real learning situations, audio recordings, observation data from lessons involving experiments, and interviews with students. The findings from this research are as follows: First, in LOGO Project Learning, the mathematically gifted elementary students were found to utilize such strategic ways of thinking as inferential thinking in use of prior knowledge and thinking procedures, generalization in use of variables, integrated thinking in use of the integration of various commands, critical thinking involving evaluation of prior commands for problem-solving, progressive thinking involving understanding, and applying the current situation with new viewpoints, and flexible thinking involving the devising of various problem solving skills. Second, the students' debugging in LOGO programming included comparing and constrasting grammatical information of commands, graphic and procedures according to programming types and students' abilities, analytical thinking by breaking down procedures, geometry-analysis reasoning involving analyzing diagrams with errors, visualizing diagrams drawn following procedures, and the empirical reasoning on the relationships between the whole and specifics. In conclusion, the LOGO Project Learning was found to be a program for gifted students set apart from other programs, and an effective way to promote gifted students' higher-level thinking abilities.

  • PDF

A Questioning Role of Teachers to Formal Justification Process in Generalization of a Pattern Task for the Elementary Gifted Class (초등학교 영재학급 학생들의 형식적 정당화를 돕기 위한 교사 발문의 역할)

  • Oh, Se-Youn;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Mathematical formal justification may be seen as a bridge towards the proof. By requiring the mathematically gifted students to prove the generalized patterned task rather than the implementation of deductive justification, may present challenges for the students. So the research questions are as follow: (1) What are the difficulties the mathematically gifted elementary students may encounter when formal justification were to be shifted into a generalized form from the given patterned challenges? (2) How should the teacher guide the mathematically gifted elementary students' process of transition to formal justification? The conclusions are as follow: (1) In order to implement a formal justification, the recognition of and attitude to justifying took an imperative role. (2) The students will be able to recall previously learned deductive experiment and the procedural steps of that experiment, if the mathematically gifted students possess adequate amount of attitude previously mentioned as the 'mathematical attitude to justify'. In addition, we developed the process of questioning to guide the elementary gifted students to formal justification.