• Title/Summary/Keyword: mathematical structures

Search Result 935, Processing Time 0.026 seconds

A NOTE ON LOCAL CALIBRATIONS OF ALMOST COMPLEX STRUCTURES

  • Kim, Hyeseon
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.384-390
    • /
    • 2022
  • In this paper, we study the obstruction on the jets of an almost complex structure J to the existence of a symplectic form ω such that J is compatible with ω. We describe some almost complex structures on ℝ4 and on ℝ6, respectively, that cannot be calibrated by any symplectic forms. In particular, these examples pertain to the model almost complex structure on ℝ4 in [3], and the simple model structure on ℝ6 in [7].

A Study on the Development of Corrosion Prediction System of RC Structures due to the Chloride Contamination (염해를 받는 철근콘크리트 구조물의 철근부식시기 예측시스템 개발에 관한 연구)

  • Kim, Do-Gyeum;Park, Seung-Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • In general. service life of the sea-shore concrete structures is largely influenced by the corrosion of reinforcing steel due to the chloride contamination, and the penetration of chloride ions into concrete is governed by concrete condition state as a micro-structure. In this study, characteristics of chloride diffusion in concrete are analyzed in accordance with the mixing properties and durability of concrete, by considering the facts that micro-structure of concrete varies with the mixing properties and can indirectly be analyzed by using the durability test. In order to predict the service life of existing concrete structures, chloride diffusion equation for the concrete structures under various service conditions and the major parameters used in that equation are formulated as the mathematical models. Based on the results of chloride diffusion analysis in accordance with the mixing properties and durability of concrete and mathematical models formulated in this study, a prediction system is developed to predict the corrosion initiation of reinforcing steel in the sea-shore concrete structures.

  • PDF

Optimum design of shape and size of truss structures via a new approximation method

  • Ahmadvand, Hosein;Habibi, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.799-821
    • /
    • 2020
  • The optimum design of truss structures is one of the significant categories in structural optimization that has widely been applied by researchers. In the present study, new mathematical programming called Consistent Approximation (CONAP) method is utilized for the simultaneous optimization of the size and shape of truss structures. The CONAP algorithm has already been introduced to optimize some structures and functions. In the CONAP algorithm, some important parameters are designed by employing design sensitivities to enhance the capability of the method and its consistency in various optimum design problems, especially structural optimization. The cross-sectional area of the bar elements and the nodal coordinates of the truss are assumed to be the size and shape design variables, respectively. The displacement, allowable stress and the Euler buckling stress are taken as the design constraints for the problem. In the proposed method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the sequential quadratic programming (SQP) algorithm. Several truss structures are designed by employing the CONAP method to illustrate the efficiency of the algorithm for simultaneous shape and size optimization. The optimal solutions are compared with some of the mathematical programming algorithms, the approximation methods and metaheuristic algorithms those reported in the literature. Results demonstrate that the accuracy of the optimization is improved and the convergence rate speeds up.

Experimental and numerical analysis of the global behaviour of the 1:9 scale model of the Old Bridge in Mostar

  • Kustura, Mladen;Smoljanovic, Hrvoje;Nikolic, Zeljana;Krstevska, Lidija
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Composite nature of the masonry structures in general causes complex and non-linear behaviour, especially in intense vibration conditions. The presence of different types and forms of structural elements and different materials is a major problem for the analysis of these type of structures. For this reason, the analysis of the behaviour of masonry structures requires a combination of experimental tests and non-linear mathematical modelling. The famous UNESCO Heritage Old Bridge in Mostar was selected as an example for the analysis of the global behaviour of reinforced stone arch masonry bridges. As part of the experimental research, a model of the Old Bridge was constructed in a scale of 1:9 and tested on a shaking table platform for different levels of seismic excitation. Non-linear mathematical modelling was performed using a combined finite-discrete element method (FDEM), including the effect of connection elements. The paper presents the horizontal displacement of the top of the arch and the failure mechanism of the Old Bridge model for the experimental and the numerical phase, as well as the comparison of the results. This research provided a clearer insight into the global behaviour of stone arch masonry structures reinforced with steel clamps and steel dowels, which is significant for the structures classified as world cultural heritage.

Teacher-student interaction patterns and teacher's discourse structures in understanding mathematical word problem (학생들의 수학 문장제 이해 과정에서 교사와 학생 간의 상호 작용 양상과 교사의 담론 구조)

  • Choi, Sang-Ho
    • The Mathematical Education
    • /
    • v.59 no.2
    • /
    • pp.101-112
    • /
    • 2020
  • The purpose of this study is to analyze the structures of teacher's discourse according to the pattern of interaction between teachers and students in the understanding mathematical word problem. The structures of teacher's discourse could be conceptualized as a process in which the teacher starts, develops and organizes the discourse based on prior research. For this purpose, the fourth class(example, a problem of the same type as the example, formative assessment, and final assessment) was extracted from one semester of experienced teachers who have been practicing teaching methods to facilitate student participation for many years. A methodology used to develop a theory based on data collected through classroom observations. Because the purpose of the study is to identify the structures of teacher's discourse to help the problem understanding, observe the teacher's discourse and collect data based on student engagement. Results show that the structure of teacher's discourse, which consults on important aspects of interaction between teachers-students and creates mathematical meanings, helped students understand the mathematics word problem by promoting their engagement in class. Based on the structures of teacher's discourse to understand problems based on the interaction patterns between teachers and students, it can be said that teachers provided specific methodologies on how to communicate with students in order to understand problems in the future.

A Form-finding Technique for Three-dimensional Spatial Structures

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.15 no.4
    • /
    • pp.207-214
    • /
    • 2013
  • A form-finding technique is proposed for three-dimensional spatial structures. Two-step discrete finite element (FE) mesh generator based on computer aided geometric design (CAGD) is introduced and used to control the shape of three-dimensional spatial structures. Mathematical programming technique is adopted to search new forms (or shapes) of spatial structures. For this purpose, the strain energy is introduced as the objective function to be minimized and the initial volume (or the initial weight) is considered as constraint function. Numerical examples are carried out to test the capability of the proposed form-finding techniques and provided as benchmark tests.

C12-SPACE FORMS

  • Gherici Beldjilali;Nour Oubbiche
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.629-641
    • /
    • 2023
  • The aim of this paper is two-fold. First, we study the Chinea-Gonzalez class C12 of almost contact metric manifolds and we discuss some fundamental properties. We show there is a one-to-one correspondence between C12 and Kählerian structures. Secondly, we give some basic results for Riemannian curvature tensor of C12-manifolds and then establish equivalent relations among 𝜑-sectional curvature. Concrete examples are given.

SKEW BRACE ENHANCEMENTS AND VIRTUAL LINKS

  • Melody Chang;Sam Nelson
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.247-257
    • /
    • 2024
  • We use the structure of skew braces to enhance the biquandle counting invariant for virtual knots and links for finite biquandles defined from skew braces. We introduce two new invariants: a single-variable polynomial using skew brace ideals and a two-variable polynomial using the skew brace group structures. We provide examples to show that the new invariants are not determined by the counting invariant and hence are proper enhancements.