• Title/Summary/Keyword: mathematical modelling

Search Result 329, Processing Time 0.024 seconds

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Adsorption and Release Characteristics of Sulindac on Chitosan-based Molecularly Imprinted Functional Polymer Films (키토산 기반 분자 각인 고분자 필름의 슐린닥 흡착 및 방출 특성)

  • Yoon, Yeon-Hum;Yoon, Soon-Do;Nah, Jae Woon;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • Molecular recognition technology has attracted considerable attention for improving the selectivity of a specific molecule by imprinting it on a polymer matrix. In this study, adsorption and release characteristics of chitosan based drug delivery films imprinted with sulindac (SLD) were investigated in terms of the plasticizer, temperature and pH and the results were also interpreted by the related mathematical models. The adsorption characteristics of target molecules on SLD-imprinted polymer films were better explained by the Freundlich and Sips equation than that of the Langmuir equation. The binding site energy distribution function was also useful for understanding the adsorption relationship between target molecules and polymer films. The drug release of SLD-imprinted polymer films followed the Fickian diffusion mechanism, whereas the drug release using artificial skin followed the non-Fickian diffusion behavior.

Development of the Agro-Industrial Complex for Improving the Economic Security of the State

  • Petrunenko, Iaroslav;Pohrishcuk, Borys;Abramova, Maryna;Vlasenko, Yurii;Halkin, Vasyl
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • Ensuring the economic security of agro-industrial complexes of Ukrainian regions has become a top-priority task of state regional policy, as their stable functioning is an essential element of economic security of the whole country. It is overcoming threats to the development of the agro-industrial complex that ensures its further effective functioning and has a significant impact on the economic security of our state. Methods: logical method; methods of system analysis; synthesis; economic and statistical method; method of expert assessment; SWOT analysis; economic and mathematical modelling and planning. Results. Characteristic features of economic security have been given. The essence and significance of the agro-industrial complex in improving the economic security of the state have been determined. It has been noted that in recent years, the agro-industrial complex, which acts as a driver of the domestic economy and has a direct impact on the development of the country, has been growing (in 2019 the cereal and legume harvest exceeded 75 million tons, 20,269 thousand tons of potatoes were dug, more than 15 million tons of sunflower, 9,688 thousand tons of vegetables and 2,119 thousand tons of fruits and berries were harvested, meat and egg production increased by 137.5 thousand tons (or 5.8%) and 545.5 million pieces (or 3.4%), respectively, the number of employed population in agriculture increased by 139.8 thousand people (or 4.9%), the labour productivity in crop production increased by UAH 294.4 thousand (or 44.6%), in livestock production - by UAH 311.3 thousand (or 61.8%)). Based on the system of production and economic indicators, the analysis of the state of the agro-industrial complex has been carried out. Taking into account the results of the obtained data and using SWOT-analysis, the major threats to the development of the agro-industrial complex have been identified. Ways of overcoming threats enhancing the economic security of Ukraine have been proposed.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Development of a quantification method for modelling the energy budget of water distribution system (상수관망 에너지 모의를 위한 정량화 분석기법 개발)

  • Choi, Doo Yong;Kim, Sanghyun;Kim, Kyoung-Pilc
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1223-1234
    • /
    • 2022
  • Efforts for reducing greenhouse gas emission coping with climate change have also been performed in the field of water and wastewater works. In particular, the technical development for reducing energy has been applied in operating water distribution system. The reduction of energy in water distribution system can be achieved by reducing structural loss induced by topographic variation and operational loss induced by leakage and friction. However, both analytical and numerical approaches for analyzing energy budget of water distribution system has been challengeable because energy components are affected by the complex interaction of affecting factors. This research drew mathematical equations for 5 types of state (hypothetical, ideal, leak-included ideal, leak-excluded real, and real), which depend on the assumptions of topographic variation, leakage, and friction. Furthermore, the derived equations are schematically illustrated and applied into simple water network. The suggested method makes water utilities quantify, classify, and evaluate the energy of water distribution system.

A constrained minimization-based scheme against susceptibility of drift angle identification to parameters estimation error from measurements of one floor

  • Kangqian Xu;Akira Mita;Dawei Li;Songtao Xue;Xianzhi Li
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Drift angle is a significant index for diagnosing post-event structures. A common way to estimate this drift response is by using modal parameters identified under natural excitations. Although the modal parameters of shear structures cannot be identified accurately in the real environment, the identification error has little impact on the estimation when measurements from several floors are used. However, the estimation accuracy falls dramatically when there is only one accelerometer. This paper describes the susceptibility of single sensor identification to modelling error and simulations that preliminarily verified this characteristic. To make a robust evaluation from measurements of one floor of shear structures based on imprecisely identified parameters, a novel scheme is devised to approximately correct the mode shapes with respect to fictitious frequencies generated with a genetic algorithm; in particular, the scheme uses constrained minimization to take both the mathematical aspect and the realistic aspect of the mode shapes into account. The algorithm was validated by using a full-scale shear building. The differences between single-sensor and multiple-sensor estimations were analyzed. It was found that, as the number of accelerometers decreases, the error rises due to insufficient data and becomes very high when there is only one sensor. Moreover, when measurements for only one floor are available, the proposed method yields more precise and appropriate mode shapes, leading to a better estimation on the drift angle of the lower floors compared with a method designed for multiple sensors. As well, it is shown that the reduction in space complexity is offset by increasing the computation complexity.

A development of an Optimization-Based Flight Scheduler and Its Simulation-Based Application to Real Airports (최적화 기법 기반의 항공기 스케줄러 개발 및 실제 공항의 수치적 모사)

  • Ryu, MinSeok;Song, Jae-Hoon;Choi, Seongim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.681-688
    • /
    • 2013
  • Several problems caused by inevitable increment of airplane have been issued. The most effective solution to solve the issues is considered as establishing appropriate Air Traffic Management (ATM) that reduces aircraft's delay at an airport and intensify the airport's capacity. The purpose of this paper is to produce the optimum aircraft schedules that maximize the aircraft throughput by smooth air traffic flow near terminal area of an airport In this paper, mathematical formulations of the scheduling problem are firstly specified. Based on the mathematical modelling, an Optimization-Based Flight Scheduler that provides the optimum flight schedules for arriving aircraft is developed by introducing the Mixed Integer Linear Programming(MILP) and the Genetic Algorithms(GA). With this scheduler, we calculated the optimum schedules to compare to real schedule data from an Incheon Airport. As a result, it is validated that aircraft throughput produced by the optimum schedule is much better than that of the schedule from the Incheon airport. The optimization-based flight scheduler is expected to deal with problems due to the aircraft saturation in near future.

Ion Compositional Existence Forms of PM10 in Seoul Area (서울지역 미세먼지(PM10) 중 이온성분의 존재형태 추정)

  • Lee, Kyoung-Bin;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Particulate matter (PM) has emitted in many regions of the world and is causing many health-related problems. Thus reasonable politics and solutions are needed to reduce PM in Seoul. Further it is required to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$, and to develop effective reduction measures in order to decrease the adverse effects of $PM_{10}$. $PM_{10}$ samples were collected in Seoul and analyzed their ions to examine the physical and chemical characteristics of ionic species. Since hydrogen ion ($H^+$) and carbonate ion (${CO_3}^{2-}$)) cannot be analyzed by Ion chromatography (IC), concentrations of $H^+$ and ${CO_3}^{2-}$ were initially estimated by pH and equivalent differences between anions and cations in this study. Starting from the study findings, good combination results for compositional patterns between anions and cations were obtained by applying a mathematical modelling technique that was based on the mass balance principle. The ions in $PM_{10}$ were combined with $H^+$, ${CO_3}^{2-}$, and supplement for $NO_3{^-}$, $Cl^-$ formed such compounds $NH_4Cl$, $NH_4NO_3$, $CaSO_4$, $(NH_4)_2SO_4$, $NaNO_3$, NaCl, $Na_2CO_3$, and $(NH_4)_2CO_3$ in the study area.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).