• Title/Summary/Keyword: mathematical material

Search Result 592, Processing Time 0.024 seconds

APPLICATION OF PROJECT MANAGEMENT: LEAN TECHNOLOGIES AND SAVING MANUFACTURING (ASPECTS OF MANAGEMENT AND PUBLIC ADMINISTRATION)

  • Kulinich, Tetiana;Berezina, Liudmyla;Bahan, Nadiia;Vashchenko, Iryna;Huriievska, Valentyna
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.57-68
    • /
    • 2021
  • Successfully adapting to digital and customer-oriented transformation, the concept of lean manufacturing professes the philosophy of creating greater benefit while minimizing losses. These losses are operations that do not add value in the production process to ensure the efficiency, flexibility, and profitability of projects. In the context of broad automation and digitalization of all sectors of the economy, mechanisms for combining automation technologies and lean production are becoming available. Moreover, when it comes to the efficient use of financial, human, or material resources, it is clear that the use of Industry 4.0 technologies can be an effective tool for achieving the goals of lean production, as many of them pursue the same goal. In this context, this article aims to study the effectiveness of the implementation of project management concepts at the global level and identify the main factors influencing its effectiveness to ensure the achievement of lean production through LEAN technologies and Industry 4.0 technologies. To achieve this goal, several statistical indicators were selected and several statistical methods of analysis were used: pairwise correlation, regression analysis, methods of comparison, synthesis, and generalization. Statistical analysis was conducted according to a survey conducted by the Project Management Institute (PMI) in 2020. An economic-mathematical model of dependence of project effectiveness in different regions of the world on the level of implementation of project management approaches is built, which shows that the increase in project effectiveness by 85% is due to financial losses, technical training, and consumer orientation. These results allow project managers to develop appropriate strategies to improve project management approaches at all levels. It is established that LEAN technologies and technologies of Industry 4.0 have several tools that have a positive effect on minimizing losses following the concept of lean production. Besides, given that the technology of Industry 4.0 is focused on the automation of Lean Production technology, a mechanism for the introduction of lean production using these technologies and methods.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Optimized Air Force Flight Scheduling Considering Pilot' s Mission Efficiency (조종사 임무 효율을 고려한 공군 비행 스케줄 최적화)

  • Kwon, Min Seok;Yoon, Chan Il;Kim, Jiyong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.116-122
    • /
    • 2020
  • Human and material resource planning is one representative example of Operations Research. Resource planning is important not only in civilian settings but also in military ones. In the Air Force, flight scheduling is one of the primary issues that must be addressed by the personnel who are connected to flight missions. However, although the topic is of great importance, relatively few studies have attempted to resolve the problem on a scientific basis. Each flight squadron has its own scheduling officers who manually draw up the flight schedules each day. While mistakes may not occur while drafting schedules, officers may experience difficulties in systematically adjusting to them. To increase efficiency in this context, this study proposes a mathematical model based on a binary variable. This model automatically drafts flight schedules considering pilot's mission efficiency. Furthermore, it also recommends that schedules be drawn up monthly and updated weekly, rather than being drafted from scratch each day. This will enable easier control when taking the various relevant factors into account. The model incorporates several parameters, such as matching of the main pilots and co-pilots, turn around time, availability of pilots and aircraft, monthly requirements of each flight mission, and maximum/minimum number of sorties that would be flown per week. The optimal solution to this model demonstrated an average improvement of nearly 47% compared with other feasible solutions.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Preservice Elementary Mathematics Teachers' Curricular Noticing: Focusing on the Lesson Planning for Rate (초등예비교사의 교육과정에 관한 노티싱: 비율 수업을 중심으로)

  • Cho, Mi Kyung
    • Education of Primary School Mathematics
    • /
    • v.24 no.2
    • /
    • pp.83-102
    • /
    • 2021
  • Curricular noticing is about how teachers understand the content and pedagogical opportunities inherent in curriculum materials. Since the enacted curriculum differs depending on which aspect of the curriculum material is paid attention to and how to interpret it, it is necessary to focus on Curricular Attending and Curricular Interpreting in Curricular Noticing for enhancing the teaching expertise of preservice teachers. First, this study categorized the objects that preservice elementary mathematics teachers attended when planning the lesson for rate. Second, in order to find out the reason for paying attention to those objects, it was analyzed what factors were related to interpret. By discussing the results, implications were drawn on how to use Curricular Noticing in preservice teacher education to enhance the pedagogical design competency of preservice elementary mathematics teachers.

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel;Rizwan Azam;Muhammad R. Riaz
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

Analysis of Intended Competency in Authorized Elementary Mathematics Textbooks: Focusing on Creativity Convergence Competency (검정 초등 수학 교과용 도서에서 나타난 의도된 역량 분석: 창의·융합 역량을 중심으로)

  • Kim, Jinho;Yeo, Sheunghyun
    • Education of Primary School Mathematics
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • One of major goals of mathematics education is to cultivate human resources which equip creative problem-solving ability. Thus, the enhancement of creative and converging ideas has been emphasized in the national curriculum since the 2009 revised curriculum. In the current study, we analyzed authorized textbook series to examine how each curriculum material addresses the creativity convergence competency. The foci of the analysis were creativity (originality, fluency, flexibility, elaboration) and convergence (intrinsic connection, extrinsic connection). In addition, we analyzed the national textbook which was based on the 2015 revised curriculum to investigate the transition between the national textbook and the authorized textbooks. We found the tasks that focused on fluency were the most frequent type regarding creativity and the tasks that connected with everyday life situations (extrinsic connection) were prevalent across the three textbook series. We provided suggestions about the development of mathematics textbooks and their implementation.

Prediction of residual compressive strength of fly ash based concrete exposed to high temperature using GEP

  • Tran M. Tung;Duc-Hien Le;Olusola E. Babalola
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.111-121
    • /
    • 2023
  • The influence of material composition such as aggregate types, addition of supplementary cementitious materials as well as exposed temperature levels have significant impacts on concrete residual mechanical strength properties when exposed to elevated temperature. This study is based on data obtained from literature for fly ash blended concrete produced with natural and recycled concrete aggregates to efficiently develop prediction models for estimating its residual compressive strength after exposure to high temperatures. To achieve this, an extensive database that contains different mix proportions of fly ash blended concrete was gathered from published articles. The specific design variables considered were percentage replacement level of Recycled Concrete Aggregate (RCA) in the mix, fly ash content (FA), Water to Binder Ratio (W/B), and exposed Temperature level. Thereafter, a simplified mathematical equation for the prediction of concrete's residual compressive strength using Gene Expression Programming (GEP) was developed. The relative importance of each variable on the model outputs was also determined through global sensitivity analysis. The GEP model performance was validated using different statistical fitness formulas including R2, MSE, RMSE, RAE, and MAE in which high R2 values above 0.9 are obtained in both the training and validation phase. The low measured errors (e.g., mean square error and mean absolute error are in the range of 0.0160 - 0.0327 and 0.0912 - 0.1281 MPa, respectively) in the developed model also indicate high efficiency and accuracy of the model in predicting the residual compressive strength of fly ash blended concrete exposed to elevated temperatures.

A Study on the Jewelry decorative pattern based on Wa-Dang in Unified Silla period (통일신라시대 와당을 모티브로 한 주얼리장식용 문양 연구)

  • kyeng-Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.113-122
    • /
    • 2023
  • This study was conducted on the premise of the development of cultural products using relic assets of traditional culture in a knowledge and information society led by culture and soft power. It was conducted in the context of exploring the possibility of cultural content products of Wa-Dang relics excavated from traditional architecture in the Unified Silla Period and expanding the scalability of commercialization motifs that are highly useful in jewelry design. First, the original form, material, use, size, meaning, and formative aesthetics of Wa-Dang were identified through literature and media research. Among the considered Wa-Dang, 10 types of Wa-Dang which represent the category and have values in modules and patterns were selected, and, then, circular images were extracted and modularized with a "formal simplification technique." Based on the "mathematical symmetry analysis technique," which is a method of systematizing pattern composition arrangement format. we derived a planar formative element that can be used in the development of the cultural content industry and jewelry design. In order to expand its usability in the jewelry industry in the future, it was presented as a 2D digital image. In the future, we hope more studies on the various cultural content industry utilizing the traditional culture will be carried out.

Prediction of Maximum Bending Strain of a Metal Thin Film on a Flexible Substrate Using Finite Element Analysis (유한요소해석을 통한 유연기판 위의 금속 박막의 최대 굽힘 변형률 예측)

  • Jong Hyup Lee;Young-Cheon Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Electronic products utilizing flexible devices experience harsh mechanical deformations in real-use environments. As a result, researches on the mechanical reliability of these flexible devices have attracted considerable interest among researchers. This study employed previous bending strain models and finite element analysis to predict the maximum bending strain of metal films deposited on flexible substrates. Bending experiments were simulated using finite element analysis with variations in the material and thickness of the thin films, and the substrate thickness. The results were compared with the strains predicted by existing models. The distribution of strain on the surface of film was observed, and the error rate of the existing model was analyzed during bending. Additionally, a modified model was proposed, providing mathematical constants for each case.