• 제목/요약/키워드: mathematical material

검색결과 591건 처리시간 0.023초

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.211-220
    • /
    • 2020
  • This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

Robust motion control of a flexible micro-actuator using $H_{\infty}$ control method

  • Okugawa, Masayuki;Sasaki, Minoru;Fujisawa, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.397-400
    • /
    • 1996
  • In this paper, robust motion control of a flexible micro-actuator is presented. The actuator is made of a bimorph piezoelectric high-polymer material (PVDF). No mathematical model system can exactly model a physical system such a flexible micro-actuator. For this reason we must be aware of how modeling errors might adversely affect the performance of a control system for such a model. The H method addresses a wide range of the control problems, combining the frequency and time domain approaches. The design is an optimal one in the sense of minimization of the maximum of the closed-loop transfer function. It includes colored measurement and process noise. It also addresses the issues of robustness due to model uncertainties, and is applicable to the, flexible micro-actuator control problem. Therefore, we adopt the H control problem to the robust motion control of the flexible micro-actuator. Theoretical and experimental results demonstrate the satisfactory performance and the effectiveness of the designed controller. the effectiveness of the designed controller.

  • PDF

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • 제2권3호
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle

  • Boulal, Ammar;Bensattalah, Tayeb;Karas, Abdelkader;Zidour, Mohamed;Heireche, Houari;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.209-223
    • /
    • 2020
  • This paper investigates the buckling behavior of carbon nanotube-reinforced composite plates supported by Kerr foundation model. In this foundation elastic of Kerr consisting of two spring layers interconnected by a shearing layer. The plates are reinforced by single-walled carbon nanotubes with four types of distributions of uniaxially aligned reinforcement material. The analytical equations are derived and the exact solutions for buckling analyses of such type's plates are obtained. The mathematical models provided, and the present solutions are numerically validated by comparison with some available results in the literature. Effect of various reinforced plates parameters such as aspect ratios, volume fraction, types of reinforcement, parameters constant factors of Kerr foundation and plate thickness on the buckling analyses of carbon nanotube-reinforced composite plates are studied and discussed.

탄소성 내연적 유한요소법을 이용한 평면 이방성 박판의 성형공정해석 (Elastic-Plastic Implicit Finite Element Method Considering Planar Anisotropy for Complicated Sheet Metal Forming Processes)

  • 윤정환;김종봉;양동열;정관수
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.233-245
    • /
    • 1998
  • A new approach has been proposed for the incremental analysis of the nonsteady state large deformation of planar anisotropic elastic-plastic sheet forming. A mathematical brief review of a constitutive law for the incremental deformation theory has been presented from flow theory using the minimum plastic work path for elastic-plastic material. Since the material embedded coordinate system(Lagrangian quantity) is used in the proposed theory the stress integration procedure is completely objective. A new return mapping algorithm has been also developed from the general midpoint rule so as to achieve numerically large strain increment by successive control of yield function residuals. Some numerical tests for the return mapping algorithm were performed using Barlat's six component anisotropic stress potential. Performance of the proposed algorithm was shown to be good and stable for a large strain increment, For planar anisotropic sheet forming updating algorithm of planar anisotropic axes has been newly proposed. In order to show the effectiveness and validity of the present formulation earing simulation for a cylindrical cup drawing and front fender stamping analysis are performed. From the results it has been shown that the present formulation can provide a good basis for analysis for analysis of elastic-plastic sheet metal forming processes.

  • PDF

인발 집속유체의 정상유동 특성 (Steady-Flow Characteristics of Bundle Fluid in Drawing)

  • 허유;김종성
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.612-621
    • /
    • 2006
  • Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed we, the more sensitive becomes the bundle flow to exogenous disturbances.

Waste Disposal Models for Manufacturing Firm and Disposal Firm

  • Tsai, Chi-Yang;Nagaraj, Sugarla Edwin
    • Industrial Engineering and Management Systems
    • /
    • 제10권2호
    • /
    • pp.115-122
    • /
    • 2011
  • This research considers a system containing a manufacturing firm who generates waste material during manufacturing process, and a disposal firm who collects and disposes the waste material. Identification of the optimal number of pick ups and the amount of waste to be disposed at certain period of time in terms of cost minimization is studied. Two types of waste accumulation rates, constant and linearly increasing, are discussed and mathematical models are developed. It can be shown that the results for these two different types of waste accumulation differ in a wide range because of the difference in the way of how waste is accumulated, which disturbs the storage cost. An integrated model is also developed and discussed in which both the manufacturing firm and the disposal firm benefit from the coordination between the two parties. It is shown that the optimal policy adopted by the integrated approach can provide a strong and consistent cost-minimizing effect for both the manufacturing firm and the disposal firm over the existing approach. Finally, all the models are verified by a numerical example and the results are compared.

집중질량 모형화에 의한 점탄성재료의 복소 탄성계수 산출을 위한 시편 크기 의 절정 (Determination of Specimen Geomery for Estimation of the Complex Modulus of Viscoelas the Materials by the Lumped Mass Model)

  • 강기호;심송;김광준
    • 소음진동
    • /
    • 제1권2호
    • /
    • pp.121-128
    • /
    • 1991
  • In order to use viscoelastic materials efficiently for noise and vibration control, or th qualify newly developed materials, knowledge of the Young' s modulus and loss factor is essemtial. These material properties, the so-called complex Young' s modulus, are frequently treated as dynamic charicteristics because of their dependence upon the frequency. Many techniques have been developed and verified for measuring complex Young' s modulus of viscoelastic materials. Among them, the impedance method is preferable in order to obtain the frequency information in detail. In this method, a cylindrical or prismatic specimen is excited into longitudinal harmonic vibration at one end, the other being fixed, and the resulting force is measured at the driving or fixed end. The amplitude ratio of the two signals and phase angle between them are then used to compute the material properties using various mathematical models. In this paper, the impedance method is investigated theoretically and experimentally. A way to determine the specimen geometry which is most appropriate for the identification of complex Young' s modulus using the lumped mass model is presented and discussed. Then experimental results supporting the theoretical predictions are presented.

  • PDF

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.