The purpose of this study was to find out how second, fourth and sixth graders understood the main contents related to spatial sense in the Seventh National Mathematics Curriculum. For this purpose, this study examined students' understanding of the main contents of congruence transformation (slide, flip, turn), mirror symmetry, cubes, congruence and symmetry. An investigation was conducted and the subjects included 483 students. The main results are as follows. First, with regards to congruence transformation, whereas students had high percentages of correct answers on questions concerning slide, they had lower percentages on questions concerning turn. Percentages of correct answers on flip questions had significant differences among the three grades. In addition, most students experienced difficulties in describing the changes of shapes. Second, students understood the fact that the right and the left of an image in a mirror are exchanged, but they had poor overall understanding of mirror symmetry. The more complicated the cubes, the lower percentages of correct answers. Third, students had a good understanding of congruences, but they had difficulties in finding out congruent figures. Lastly, they had a poor understanding of symmetry and, in particular, didn't distinguish a symmetric figure of a line from a symmetric figure of a point.
The theory of embodied cognition assumes that behaviors, senses and cognitions are closely connected, and there is a growing interest in investigating the significance of embodied cognition in the field of mathematics education. This study aims to applicate the embodied turtle metaphor and expressions when students visualize three-dimensional objects. We used MRT(Verdenberg & Kuse, 1978) & SVT for this research and both tests turned out that turtle schemes are useful to the students in a low level group. In addition, students found turtle schemes more useful in SVT which requires constructing three-dimensional objects, than in MRT which requires just rotating the image of three-dimensional objects in their mind. These results suggest that providing students who are less capable of spatial visualizing with the embodied schemes like turtle metaphor and expressions can be an alternative to improve their spatial visualization ability.
웹 영상에서 에지는 픽셀의 밝기가 급격하게 변화되는 부분으로 에지를 통하여 물체의 위치나 크기, 물체의 텍스처에 대한 정보를 얻을 수 있다. 지금까지 에지 검출은 주로 단순한 영상에 대해 미분 연산자를 이용한 수학적 방법에 의해 이루어져왔고 최근에 잡음이 포함된 복잡한 영상에 대해 통계적 방법을 이용한 에지검출에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 영상실험을 통하여 기존의 Sobel 연산자 등을 이용한 수학적 방법과 Canny 방법, Wavelet 변환방법 그리고 통계적인 T 검정과 Wilcoxon 검정을 이용한 방법들과의 에지검출 성능을 비교분석하고 Java 언어를 사용하여 웹 상에서 구현한다.
Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.
Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.
The formula contains up between the text and the structural information, as well as their mathematical symbols. Research on-line or off-line recognition formula is underway actively used in various fields, and various forms of the equation are implemented recognition system. Although many documents are included in the various formulas, it is not easy to enter a formula into the computer. Recognition of the expression is divided into two processes of symbol recognition and structural analysis. After analyzing the location information of each character is specified to recognize the effective area after each symbol, and to the structure analysis based on the proximity between the characters is recognized as an independent single formula. Furthermore, analyzing the relationship between the front and back each time a combination of the position relationship between each symbol, and then to add the symbol which was able to easily update the structure of the entire formula. In this paper, by using a scanner to scan the book formula was used to interpret the meaning of the recognized symbol has a relative size and location information of the expression symbol. An algorithm to remove the formulas for calculation of the number of formula is present at the same time is proposed. Using the proposed algorithms to scan the books in the formula in order to evaluate the performance verification as 100% separation and showed the recognition rate equation.
Let K be a field of characteristic zero. We first show that images of the linear derivations and the linear 𝓔-derivations of the polynomial algebra K[x] = K[x1, x2, …, xn] are ideals if the products of any power of eigenvalues of the matrices according to the linear derivations and the linear 𝓔-derivations are not unity. In addition, we prove that the images of D and 𝛿 are Mathieu-Zhao spaces of the polynomial algebra K[x] if D = ∑ni=1 (aixi + bi)∂i and 𝛿 = I - 𝜙, 𝜙(xi) = λixi + 𝜇i for ai, bi, λi, 𝜇i ∈ K for 1 ≤ i ≤ n. Finally, we prove that the image of an affine 𝓔-derivation of the polynomial algebra K[x1, x2] is a Mathieu-Zhao space of the polynomial algebra K[x1, x2]. Hence we give an affirmative answer to the LFED Conjecture for the affine 𝓔-derivations of the polynomial algebra K[x1, x2].
본 논문에서는 시각 조형적인 입장에서의 '칠성 화(七星畵)'를 대한(大韓)민족 고유의 시각전달체계의 한 심벌(symbol)로서 이해하였다. 또한 그것에 대한 그래픽분석을 통해 토속적인 민족의 정서를 단순하고 그래픽한 선과 색채로써 수학적인 그리드(grid)안에 규격있게 표현하였음을 분석하였다. 이에 칠성 화를 조상의 시각 조형물로서 커뮤니케이션 디자인의 한 분야로 정착시키는 데 기여하고자 함이 본 연구의 주된 목적이다. 이에 그래픽 측면 구조분석의 구체적 내용을 요약하면 1) 동양의 수학적 사고와 공간 구성은 기본적으로 동양의 공(空)과 허(虛)로 일컬어지는 0(zero)의 개념과 수학의 무한(無限)의 수(數)개념을 설명하였으며, 이것을 근거로 음양론(陰陽論)을 기초로 한 대칭 개념의 발전으로 대각선 전개 법을 유추하여 방위개념에 의거한 공간분할 방식을 설명하였다. 2) 비례분석에서는 황금 분할비 구형을 기준하여 현대적 레이아웃에 있어 시각중심 위치를 잡고 분석하였는데 이에 칠성화의 존상(尊像)의 미간중심을 그 비례 중심적으로 지정하였다. 3) 수학적 구조 분석은 균형있는 배열 및 그 형태법칙에 어떠한 통일된 원칙을 찾기 위한 방법으로 황금 분할 비에 의거하여 분할한 그리드를 적용시켜 그 위에 주(主)인물과 부(副)인물의 기본적인 움직임에 인체모듈(module)에 기준한 형태법칙을 유추 분석하였다. 이에 칠성화의 경우 만다라(曼茶羅) 도형의 기본 분할 방법과 그 맥을 같이 하여 두 가지 유형으로 분석하였다.
본 논문에서는 인간 시각 체계에 기반하여 주관적 화질의 열화없이 전송 정보량을 효과적으로 줄일 수 있고, 또한 전송 정보량을 조절할 수 있는 영역기반 초적속 부호화에 적합한 새로운 계층적 영상 분할 알고리즘을 제한한다. 제안한 알고리즘은 각 단계에서 수리 형태학에 기반한 영상 분할과 인간 시각 체계를 고려한 영역 볍합 고조로 이루어져 있다. 영상분할은 3단계의 계층적 구조로 이루어져 있으며, 영역 병합은 각 단계에서 인간 시각 체계에 기반하여 인간 시각이 구분할 수 없는 두 인접 영역의 쌍들을 추출한 후 영역 병합을 수행한다. 이때 인간 시각 체계에 기반하여 병합할 영역을 추출하고 제안한 병합을 우선 순위 함수에 의한 병합 우선 순위에 따른 영역 볍합ㅇ르 차례로 수행하여 영역의 수를 효과적으로 줄임으로써 영역기반 초저속 부호화시 과다한 윤곽선 정보로 인한 병목현상을 개선할 수 있다. 그리고 각 단계에서의 영역 병합시 정보량 조절 요소 값에 따라 전송 정보량을 조절할 수 있어 기존의 방법보다 유연한 분할 구조를 나타낸다. 실험을 통하여 제안한 방법은 기존의 방법보다 PSNR 및 주관적 화질은 유사하나, 전송할 윤곽선 정보는 상당히 줄일 수 있어 영역기반 초적속 부호화를 위한 효율적 영상 분할 알고리즘임을 알 수 있다.
본 연구는 30명의 고등학교 2학년 학생들을 통해서 수학적 시각화의 구성 요소를 알아보고, 시각화 구성 요소들이 수학 문제 해결 과정에서 어떻게 활용되는지를 알아보는 것이다. 특히, 30명의 학생들 중 시각성 평가가 높은 5명의 학생들에 대해서 질적 사례 연구를 실시하였다. 분석 결과를 보면, 시각화의 구성 요소는 크게 정신적 이미지, 외적 표상, 이미지의 변형 및 조작, 공간 시각화 능력으로 범주화 (Guti$\acute{e}$rrez, 1996) 되었고, 각 요소마다 더 세분화되어져 나타났다. 또한, 수학 문제 해결 과정에서 시각화 요소들은 외적 표상을 생성하기 전에 기본적으로 정신적 이미지를 생성하고 있었고, 정형화된 정신적 이미지의 경우 문제 해결에 대한 학생들의 풍부한 사고를 억제하고 문제에 대한 부적절한 풀이 결과를 이끌어낼 수 있는 부정적인 영향을 주었다. 차원 변화에 의해서 이루어지는 이미지 변형 및 조작을 어려워하는 학생들이 있었으나, 문제 해결 과정에서 답을 추론하기 위한 이미지 탐색 활동과 도출된 답의 정당화를 위해서 이미지 조작 활동을 활용하고 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.