• Title/Summary/Keyword: mathematical characters

Search Result 122, Processing Time 0.024 seconds

A Dynamic Defense Using Client Puzzle for Identity-Forgery Attack on the South-Bound of Software Defined Networks

  • Wu, Zehui;Wei, Qiang;Ren, Kailei;Wang, Qingxian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.846-864
    • /
    • 2017
  • Software Defined Network (SDN) realizes management and control over the underlying forwarding device, along with acquisition and analysis of network topology and flow characters through south bridge protocol. Data path Identification (DPID) is the unique identity for managing the underlying device, so forged DPID can be used to attack the link of underlying forwarding devices, as well as carry out DoS over the upper-level controller. This paper proposes a dynamic defense method based on Client-Puzzle model, in which the controller achieves dynamic management over requests from forwarding devices through generating questions with multi-level difficulty. This method can rapidly reduce network load, and at the same time separate attack flow from legal flow, enabling the controller to provide continuous service for legal visit. We conduct experiments on open-source SDN controllers like Fluid and Ryu, the result of which verifies feasibility of this defense method. The experimental result also shows that when cost of controller and forwarding device increases by about 2%-5%, the cost of attacker's CPU increases by near 90%, which greatly raises the attack difficulty for attackers.

TG-SPSR: A Systematic Targeted Password Attacking Model

  • Zhang, Mengli;Zhang, Qihui;Liu, Wenfen;Hu, Xuexian;Wei, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2674-2697
    • /
    • 2019
  • Identity authentication is a crucial line of defense for network security, and passwords are still the mainstream of identity authentication. So far trawling password attacking has been extensively studied, but the research related with personal information is always sporadic. Probabilistic context-free grammar (PCFG) and Markov chain-based models perform greatly well in trawling guessing. In this paper we propose a systematic targeted attacking model based on structure partition and string reorganization by migrating the above two models to targeted attacking, denoted as TG-SPSR. In structure partition phase, besides dividing passwords to basic structure similar to PCFG, we additionally define a trajectory-based keyboard pattern in the basic grammar and introduce index bits to accurately characterize the position of special characters. Moreover, we also construct a BiLSTM recurrent neural network classifier to characterize the behavior of password reuse and modification after defining nine kinds of modification rules. Extensive experimental results indicate that in online attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 275%, and respectively outperforms its foremost counterparts, Personal-PCFG, TarGuess-I, by about 70% and 19%; In offline attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 90%, outperforms Personal-PCFG and TarGuess-I by 85% and 30%, respectively.

A Study on the Development of Computer Assisted Instruction for the Middle School Mathematics Education - Focused on the graph of quadratic function - (중학교 수학과 CAI 프로그램 개발 연구 -이차함수의 그래프를 중심으로-)

  • 장세민
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.151-163
    • /
    • 1998
  • In mathematics education, teaching-learning activity can be divided largely into the understanding the mathematical concepts, derivation of principles and laws, acquirement of the mathematical abilities. We utilize various media, teaching tools, audio-visual materials, manufacturing materials for understanding mathematical concepts. But sometimes we cannot define or explain correctly the concepts as well as the derivation of principles and laws by these materials. In order to solve the problem we can use the computer. In this paper, character and movement state of various quadratic function graph types can be used. Using the computers is more visible than other educational instruments like blackboards, O.H.Ps., etc. Then, students understand the mathematical concepts and the correct quadratic function graph correctly. Consquently more effective teaching-learning activity can be done. Usage of computers is the best method for improving the mathematical abilities because computers have functions of the immediate reaction, operation, reference and deduction. One of the important characters of mathematics is accuracy, so we use computers for improving mathematical abilities. This paper is about the program focused on the part of "the quadratic function graph", which exists in mathematical curriculum the middle school. When this program is used for students, it is expected the following educational effect. 1, Students will have positive thought by arousing interests of learning because this program is composed of pictures, animations with effectiveness of sound. 2. This program will cause students to form the mathematical concepts correctly. 3. By visualizing the process of drawing the quadratic function graph, students understand the quadratic function graph structually. 4. Through the feedback, the recognition ability of the trigonometric function can be improved. 5. It is possible to change the teacher-centered instruction into the student-centered instruction. For the purpose of increasing the efficiencies and qualities of mathmatics education, we have to seek the various learning-teaching methods. But considering that no computer can replace the teacher′s role, tearchers have to use the CIA program carefully.

  • PDF

Instrument Development and Analysis of Secondary Students' Mathematical Beliefs (우리나라 중.고등학생의 수학적 신념 측정 및 특성 분석)

  • Kim, Bu-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.2
    • /
    • pp.229-259
    • /
    • 2012
  • The purpose of the present study is to develop instrument of mathematical belief of middle school and high school students and to analysis results of test using the instrument. Based on the results of literature review, mathematical belief is the cumulative effects of self-assessment and self-concept in mathematical learning and achievement experience. Four sub-components of mathematical belief is identified belief of school mathematics, belief of mathematical problem solving, mathematical self-concept, belief of mathematical teaching and learning. The instrument was developed to investigate mathematical belief by reflecting Korean middle school and high school students' psychological characters. To develop the appropriate items for the mathematical belief, after reviewing literature thoroughly, first version of the instrument was developed and exploratory factor analysis and confirmatory factor analysis were conducted. Then, to reduce the effect of the gender difference and achievement level difference, Correlation Analysis and 1-way ANOVA was performed. Also, using multiple group confirmatory factor analysis, this instrument was investigated to see whether this can be used for both middle school and high school. The final items for middle school students is consisted 7 items of belief of school mathematics, 9 items of belief of mathematical problem solving, 11 items of mathematical self-concept, 10 items of belief of mathematical teaching and learning. Instrument of mathematical belief for high school students is consisted 9 items of belief of school mathematics, 9 items of belief of mathematical problem solving, 11 items of mathematical self-concept, 11 items of belief of mathematical teaching and learning. This study examined the differences about mathematical belief's sub-factors shown by three groups of mathematics achievement level. Students of higher achievement level showed that the degree of most factors ware the highest excepting stereotype of belief of school mathematics. Also, Male students preferred more positive in mathematics belief than female students.

  • PDF

Analyzing Tasks in the Geometry Area of 7th Grade of Korean and US Textbooks from the Perspective of Mathematical Modeling (수학적 모델링 관점에 따른 한국과 미국의 중학교 1학년 교과서 기하 영역에 제시된 과제 분석)

  • Jung, Hye-Yun;Jung, Jin-Ho;Lee, Kyeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.2
    • /
    • pp.179-201
    • /
    • 2020
  • The purpose of this study is to analyze tasks reflected in Korean and US textbooks according to the mathematical modeling perspectives, and then to compare the diversity of learning opportunities given to students from both countries. For this, we analyzed mathematical modeling tasks of textbooks based on three aspects: mathematical modeling process, data, and expression. Results are as follows. First, with respect to modeling process, Korean textbook provides a high percentage of the task at all stages of modeling than US textbook. Second, with respect to data, both countries' textbooks have the highest percentage of matching task. Korean textbooks have a large gap in data characteristics by textbook. Third, with respect to expression, both countries' textbooks have the highest percentage of text and picture. Korean textbooks have a large gap in the type of expression than US textbooks, and some textbooks have no other expression except for text and picture. Fourth, tasks were analyzed by integrating the three features. The three features were not combined in various ways. It is necessary to diversify the integration of the three features.

Quantitative Linguistic Analysis on Literary Works

  • Choi, Kyung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1057-1064
    • /
    • 2007
  • From the view of natural language process, quantitative linguistic analysis is a linguistic study relying on statistical methods, and is a mathematical linguistics in an attempt to discover various linguistic characters by interpreting linguistic facts quantitatively through statistical methods. In this study, I would like to introduce a quantitative linguistic analysis method utilizing a computer and statistical methods on literary works. I also try to introduce a use of SynKDP, a synthesized Korean data process, and show the relations between distribution of linguistic unit elements which are used by the hero in a novel #Sassinamjunggi# and theme analysis on literary works.

  • PDF

Analyzing a Mathematical Gifted Student's Output for Mentor-Independent Study - A Case Study Focused on Mathematics Education for the Gifted - (수학 영재학생의 사사독립연구에 대한 산출물 분석 - 중등 영재학생을 중심으로 한 사례연구 -)

  • Lee, Heon-Soo;Park, Jong-Youll
    • Communications of Mathematical Education
    • /
    • v.25 no.1
    • /
    • pp.185-205
    • /
    • 2011
  • In this paper, we investigated the mathematical output of a gifted student's independent study. We chose one student who was taking a mentorship course in mathematics at the Gifted Education Center in Chonnam National University, and analyzed the characters of the result which a student showed through the output of independent study and studied the psychological change of a student while he was making a presentation of the results of his study. We found following facts. First, a mentor-independent study improves a mathematical gifted student's inductive thinking and ability to generalize and apply to other cases. Second, presenting a mathematical gifted student's output for mentor-independent study improves his ability of mathematical communication in the abilities of creative problem solving. Finally, there is an increased change in his perception and self-efficacy of mathematics after the presentation.

A Study on the Development of Computer Assisted Instruction for the High School Mathematics Education (고등학교 수학과 교육을 위한 CAI 프로그램 개발 연구 - 정적분을 중심으로 -)

  • 이덕호;김왕식
    • Journal of the Korean School Mathematics Society
    • /
    • v.2 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • In mathematics education, teaching-learning activity can be divided largely into the understanding the mathematical concepts, derivation of principles and laws acquirement of the mathematical abilities. We utilize various media, teaching tools, audio-visual materials, manufacturing materials for understanding mathematical concepts. But sometimes we cannot define or explain correctly the concepts as well as the derivation of principles and laws by these materials. In order to solve the problem we can use the computer. In this paper, ′the process of the length of curve being equal to the sum of the vectors when intervals get smaller′ and ′the process of calculating volume of spinning curve by using definite integral.′ Using the computers is more visible than other educational instruments like blackboards, O.H.Ps., etc. Also it can help students with solving mathematical problems intuitively. Consequently more effective teaching-learning activity can be done. Usage of computers is the best method for improving the mathematical abilities because computers have functions of the immediate reaction, operation, reference and deduction. One of the important characters of mathematics is accuracy, so we use computers for improving mathematical abilities. This paper is about the program focused on the part of "the application of definite integral", which exists in mathematical curriculum the second and third grade of high school. When this study is used for students as assisting materials, it is expected the following educational effect. 1. Students will have precise concepts because they can understand what they learn intuitively. 2. Students will have positive thought by arousing interests of learning because this program is composed of pictures, animations with effectiveness of sound. 3. It is possible to change the teacher-centered instruction into the student-centered instruction. 4. Students will understand the relation between velocity and distance correctly because they can see the process of getting the length of curve by vector through the monitor. For the purpose of increasing the efficiencies and qualities of mathematics education, we have to seek the various learning-teaching methods. But considering that no computer can replace the teacher′s role, teachers have to use the CIA program carefully.

  • PDF

GAUSS SUMS FOR U(2n + 1,$q^2$)

  • Kim, Dae-San
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.871-894
    • /
    • 1997
  • For a lifted nontrivial additive character $\lambda'$ and a multiplicative character $\chi$ of the finite field with $q^2$ elements, the 'Gauss' sums $\Sigma\lambda'$(tr $\omega$) over $\omega$ $\in$ SU(2n + 1, $q^2$) and $\Sigma\chi$(det $\omega$)$\lambda'$(tr $\omega$) over $\omega$ $\in$ U(2n + 1, $q^2$) are considered. We show that the first sum is a polynomial in q with coefficients involving certain new exponential sums and that the second one is a polynomial in q with coefficients involving powers of the usual twisted Kloosterman sums and the average (over all multiplicative characters of order dividing q-1) of the usual Gauss sums. As a consequence we can determine certain 'generalized Kloosterman sum over nonsingular Hermitian matrices' which were previously determined by J. H. Hodges only in the case that one of the two arguments is zero.

  • PDF

ON THE γ-TH HYPER-KLOOSTERMAN SUMS AND A PROBLEM OF D. H. LEHMER

  • Tianping, Zhang;Xifeng, Xue
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.733-746
    • /
    • 2009
  • For any integer k $\geq$ 2, let P(c, k + 1;q) be the number of all k+1-tuples with positive integer coordinates ($a_1,a_2,...,a_{k+1}$) such that $1{\leq}a_i{\leq}q$, ($a_i,q$) = 1, $a_1a_2...a_{k+1}{\equiv}$ c (mod q) and 2 $\nmid$ ($a_1+a_2+...+a_{k+1}$), and E(c, k+1; q) = P(c, k+1;q) - $\frac{{\phi}^k(q)}{2}$. The main purpose of this paper is using the properties of Gauss sums, primitive characters and the mean value theorems of Dirichlet L-functions to study the hybrid mean value of the r-th hyper-Kloosterman sums Kl(h,k+1,r;q) and E(c,k+1;q), and give an interesting mean value formula.