• 제목/요약/키워드: materials simulation

검색결과 3,364건 처리시간 0.033초

허니컴 구조 SiC 발열체 성능 평가 시뮬레이션 (Simulation of Honeycomb-Structured SiC Heating Elements)

  • 이종혁;조영재;김찬영;권용우;공영민
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.450-454
    • /
    • 2015
  • A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.

알루미늄, 마그네슘과 구리합금의 비정형롤판재성형 공정 적용성 비교에 관한 연구 (Comparative Study of Applicability of Aluminum, Magnesium and Copper Alloy Sheets using Flexibly-reconfigurable Roll Forming)

  • 길민규;윤준석;박지우;강범수
    • 소성∙가공
    • /
    • 제26권3호
    • /
    • pp.168-173
    • /
    • 2017
  • A new sheet metal forming process, called flexibly reconfigurable roll forming (FRRF), is expected to resolve the economical limitation of the existing 3D curved sheet metal forming processes. The height-controllable guides and a couple of flexible rollers are utilized as the forming tool. Recently, as the 3D curved sheet metal is increasingly demanded in various fields, the application of FRRF to diverse materials is necessary. In addition, the formability comparison of several materials is needed. Therefore, in this study, we investigated the applicability of FRRF for different materials such as aluminum, magnesium, and copper alloys, and also the formability of these materials was compared using FRRF. The numerical simulation was conducted using ABAQUS, the commercial software, and the experiments were carried out using an FRRF apparatus to validate the simulation results. Finally, the applicability of FRRF for the chosen materials and the formability of these materials on FRRF process were confirmed by comparing the simulation and experimental results.

Characteristics Investigation of Organic Light Emitting Diodes Using Numerical Device Simulation

  • Lee, Yang-Soo;Park, Jae-Hoon;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.28-31
    • /
    • 2003
  • We have investigated the electrical characteristics of the organic light emitting diodes (OLEDs) using the numerical device simulation. The current-voltage characteristics, the charge carrier concentrations, and the recombination rate profiles are presented. The simulation results of the effects of the various device parameters on the device characteristics are discussed.

  • PDF

Computer Simulation of Microstructure of Particle Sediment

  • Kim, Jong-Cheol;Keun Auh;David M. Martin
    • The Korean Journal of Ceramics
    • /
    • 제5권1호
    • /
    • pp.30-34
    • /
    • 1999
  • Particle settling behavior was studied by the computer simulation using simultaneous particle condensation and relaxation. This three-dimensional settling algorithm includes the estimation of powder sediment density. Density distribution through the powder sediment was compared and was agreed well with the experimental findings. Settling density depended strongly of the degree of particle relaxation. Sediment strength and isotropy also depended on the degree of particle relaxation. Sever particle bridging was found near sharp corners.

  • PDF

표면에너지의 이방성에 따른 다공체의 조직변화 시뮬레이션 (Simulation on the Microstructure Development of Porous Materials with Respect to the Surface Energy Anisotropy)

  • 신순기
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.500-506
    • /
    • 2007
  • The effects of anisotropic surface energy on the microstructure development of porous materials have been studied through Monte Carlo simulation using a three dimensional lattice. The changes in porosity ($f_v$), mean grain diameter ($D_s$), fraction of connected pores ($f_{v,c}$) and contiguity of the solid phase (C) were examined in cases with three different ${\gamma}_{SV}$ relations and initial grain diameters ($D_{s,o}$). It has been found that larger ${\gamma}_{SV}$ enhances sintering of particles and increases C and does not change $D_s$. And Introducing anisotropic ${\gamma}_{SV}$ brought an increase in $f_v$ and $f_{v,c}$ and an decrease in $D_s$ and C, and this tendency become more marked for fine $D_{s,o}$.

다중물리 전산모사를 이용한 물성 최적화 이론 및 시뮬레이션 (Material Design Using Multi-physics Simulation: Theory and Methodology)

  • 현상일
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.767-775
    • /
    • 2014
  • New material design has obtained tremendous attention in material science community as the performance of new materials, especially in nano length scale, could be greatly improved to applied in modern industry. In certain conditions limiting experimental synthesis of these new materials, new approach by computer simulation has been proposed to be applied, being able to save time and cost. Recent development of computer systems with high speed, large memory, and parallel algorithms enables to analyze individual atoms using first principle calculation to predict quantum phenomena. Beyond the quantum level calculations, mesoscopic scale and continuum limit can be addressed either individually or together as a multi-scale approach. In this article, we introduced current endeavors on material design using analytical theory and computer simulations in multi-length scales and on multi-physical properties. Some of the physical phenomena was shown to be interconnected via a cross-link rule called 'cross-property relation'. It is suggested that the computer simulation approach by multi-physics analysis can be efficiently applied to design new materials for multi-functional characteristics.

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

수치적 변수들이 배면판을 이용한 고강도 강판의 전자기 성형 해석에 미치는 영향도 분석 (Sensitivity Analysis of Numerical Variables Affecting the Electromagnetic Forming Simulation of a High Strength Steel Sheet Using a Driver Sheet)

  • 박현일;이진우;이영선;김지훈;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.159-166
    • /
    • 2019
  • Electromagnetic forming (EMF) simulations consider 3-dimensionally coupled electromagnetic-mechanical phenomenon using LS-DYNA, therefore the calculation cost is normally expensive. In this study, a sensitivity analysis in regard to the simulation variables affecting the calculation time was carried out. The EMF experiments were conducted to form an elliptically protruding shape on a high-strength steel sheet, and it was predicted using LS-DYNA simulation. In this particular EMF simulation case, the effect of several simulation variables, viz., element size, contact condition, EM-time step interval, and re-calculation number of the EM matrices, on the shape of elliptical protrusion and the total calculation time was analyzed. As a result, reasonable values of the simulation variables between the simulation precision and calculation time were proposed, and the EMF experiments with respect to the charging voltages were successfully predicted.