• Title/Summary/Keyword: materials for activity

Search Result 3,825, Processing Time 0.028 seconds

Synthesis, Self-assembly, and Catalytic Activity of 1H-Imidazole Amphiphiles

  • Park, Jun-Ha;Kim, Min-Soo;Seo, Sang-Hyuk;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2193-2198
    • /
    • 2011
  • We prepared polycatenar 1H-imidazole amphiphiles having a structure in which a 1H-imidazole head was connected through a benzene ring to a pheny group having two or three oligo(ethylene glycol) chains and studied their supramolecular assembly by fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). When the aqueous solutions of the amphiphiles ($5{\times}10^{-5}M{\sim}10^{-3}M$) were deposited onto a carbon-coated copper grid and dried, twisted structures with diameters of ~200-300 nm were imaged by TEM and AFM. We presume that the structures comprised a chain of the amphiphile dimers formed via successive hydrogen bonding between the 1H of the imidazole group and 3N of the neighboring one. In a solution of pH 4, entangled fibers with diameters of several nanometers were observed by TEM. In a pH 10 solution, film-like aggregates formed exclusively. The 1H-imidazole amphiphiles hydrolyzed tetraethoxysilane to induce gelation to form fibrous and spherical silica structures at neutral pH in aqueous solutions. No silica was formed when imidazole was used instead of the amphiphiles, suggesting that the selfassembled aggregates of the amphiphiles were responsible for the gelation.

Visible Light Photoelectrocatalytic Properties of Novel Yttrium Treated Carbon Nanotube/Titania Composite Electrodes

  • Zhang, Feng-Jun;Chen, Ming-Liang;Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • Photoelectrocatalytic decolorization of methlene blue (MB) in the presence of two types of carbon nanotube/titania and yttrium-treated carbon nanotube/titania electrodes in aqueous solutions were studied under visible light. The prepared composite electrodes were characterized by X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray analysis, and photoelectrocatalytic activity. The photoelectrocatalytic performances of the supported catalysts were evaluated for the decolorization of MB solution under visible light irradiation. The results showed that yttrium incorporation enhanced the decolorization rate of MB. It was found that the photoelectrocatalytic degradation of a MB solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, the enhancement of yttrium and a function of the applied potential. The repeatability of photocatalytic activity was also tested. The presence of yttrium enhanced the hydrophillicity of yttrium-carbon nanotubes/titania electrode because more OH groups can be adsorbed on the surface.

Preparation of CdS-AC/TiO2 Composites Designed for a High Photonic Effect and their Photocatalytic Activity Under Visible Light

  • Park, Chong-Yeon;Choi, Jong-Geun;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.433-438
    • /
    • 2011
  • In this study, CdS combined activated carbon/$TiO_2$ (CdS-AC/$TiO_2$) composites were prepared by a sol-gel method to improve the photocatalytic performance of $TiO_2$. These composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and UV-vis analysis. The photocatalytic activities were examined by the degradation of methylene blue (MB) under visible light irradiation. The photodegradation rate of MB under visible light irradiation reached 90.1% in 120 min. The kinetics of MB degradation was plotted alongside the values calculated from the Langmuir-Hinshelwood equation. The 0.2 CAT sample showed the best photocatalytic activity, which might be due to an increase in the photo-absorption effect by activated carbon and the cooperative effect of CdS.

Characteristics of Biodegradation under Composting and Vermiculite Condition (폐 MDF 퇴비화 사용을 위한 생분해 환경 특성에 관한 연구 (I))

  • Choi, Chul;Yoo, Ji-Chang;Yang, Seong-min;Lee, Chang-goo;Lee, Seok-eon;Kang, Seog-goo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.127-133
    • /
    • 2016
  • This study is performed that furniture and interior materials of MDF's (Medium Density Fiberboard) biodegradation properties, and the goal of this study is investigation of possibility of waste-MDF's composting after landfilling. To investigate biodegradation, this study was performed according to KS M ISO 14855-1, and there were two different soil conditions including a compost condition and an activated vermiculite condition as artificial soil. This experiment was tested for 40 days. The measurement of carbon-dioxide generation was processed every 24 hour in 1-2 week, and every 48 hour after 3 week. In the same days, MDF showed 24.4% of biodegradation in compost condition, and 6.2% in activated vermiculite. Also, the reference material of TLC (thin-layer chromatography) grade cellulose showed 26.4%, 11.4% in compost and activated vermiculite respectively. The dilution plate method was performed for biological analysis in the study. This experiment was used for investigation of inoculum's (Bacillus licheniformis) activity. As the result of bioassay, compost has more other germs include inoculum than activated vermiculite in the first week. Especially in the 2nd week, the reference material under the compost condition showed the most germ's activity, and also the biodegradation was the highest. Consequentially, compost condition was able to reduce a performing period of biodegradation testing than activated vermiculite. However, activated vermiculite could be stabilizing errors between repetition.

Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells (Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도)

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Purification and Characterization of Cyclodextrin Glucanotransferase from Bacillus sp. El (Bacillus sp. E1이 생성하는 Cyclodextrin Glucanotransferase의 정제 및 특성)

  • Park, Cheon-Seok;Woo, Eui-Jeon;Kuk, Seung-Uk;Seo, Byung-Cheol;Park, Kwan-Hwa;Lim, Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.156-163
    • /
    • 1992
  • Bacillus sp. was isolated from soil for its strong activity of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19). The enzyme was purified by gel filtration and anion exchange column chromatography using FPLC. The purified enzyme exhibited its maximum CGTase activity in the pH range of 6~8 and the temperature range of 50~$70^{\circ}C$. The molecular weight was estimated as 114,000 by SDS-PAGE. The isoelectric point of the enzyme was 4.3. The CGTase of Bacillus sp. E l produced $\beta$-cyclodextrin mainly and did not produce a-cyclodextrin. The product ratio of $\beta$-cyclodextrin to $\gamma$-cyclodextrin was 7:l.

  • PDF

In Vitro Growth-inhibiting Effects of Leaf Extracts from Pinus Species on Human Intestinal Bacteria

  • Cho, Seok-Hwan;Jeon, Ho-Joung;Han, Yu-Kyung;Yeon, Seong-Hum;Ahn, Young-Joon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.202-204
    • /
    • 1999
  • Methanol extracts of leaves from 15 Pinus species belonging to the family Pinaceae were tested for their in vitro growth-inhibiting activities against 10 bacteria commonly found in the gastrointestinal tracts of human, using impregnated paper disk methods. The inhibitory activities varied with both bacterial strain and Pinus species used. At a concentration of 10 mg/disk, a clear growth inhibition was produced from the extracts of Pinus armandii, P. banksiana, P. bungeana, P. densiflora, P. rigida, and P. thunbergii against Clostridium perfringens, whereas all Pinus samples revealed weak or little growth-inhibiting activity against Escherichia coli, Bacteroides fragilis, and Staphylococcus aureus. At 5 mg/disk, the extracts of P. banksiana and P. thunbergii exhibited potent growth inhibition toward C. perfringens. All the extracts except the one from P. densiflora did not adversely affect growth of Bifidobacterium adolescentis, B. longum, B. bifidum, B. breve, B. animalis, and Lactobacillus casei. The growth-inhibiting activity was more pronounced in C. perfringens, as compared to the lactic acid-producing bacteria. These results may be an indication of at least one of the pharmacological activities of these Pinus species.

  • PDF

FUSION MATERIALS AND FUSION ENGINEERING R&D IN JAPAN

  • KOHYAMA A.;KONISHI S.;KIMURA A.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.423-432
    • /
    • 2005
  • Japanese activities on fusion structural materials R&D have been well organized under the coordination of university programs and JAERI/NIMS programs more than two decades. Where, two categories of structural materials have been studied, those are; reduced activation martensitic/ferritic steels (RAFs) as reference material and vanadium alloys and SiC/SiC composite materials as advanced materials. The R&D histories of these candidate materials and the present status in Japan are reviewed with the emphasis on materials behavior under radiation damage. The importance of IFMIF and technology development for blanket R&D including ITER-TBRG activity is emphasized and the current status of those activities in Japan is also presented.

Herbicidal Characteristics of Soil Bacteria Actinomycetes G-0299 to Southern Crabgrass (토양 방선균 Actinomycetes G-0299의 바랭이에 대한 선택적 살초특성)

  • Choi, Jung-Sup;Kim, Young Sook;Kim, Jae Deok;Kim, Hye Jin;Ko, Young-Kwan;Park, Kee Woong;Moon, Surk-Sik
    • Weed & Turfgrass Science
    • /
    • v.6 no.3
    • /
    • pp.212-221
    • /
    • 2017
  • An actinomycetes isolate G-0299 obtained from a forest soil showed strong phytotoxic activity to Digitaria ciliaris. For the foliar application study, the culture filtrate of the isolate G-0299 showed strong herbicidal activity only to D. ciliaris among the 12 monocot and 5 dicot weed species. And herbicidal activity at a concentration of 500, 250, 125 and $62.5{\mu}gmL^{-1}$ of culture filtrate was 100%, 98%, 70% and 40%, respectively. Phytotoxic symptoms of the culture filtrate by foliar application were desiccation and burn-down or bleaching of leaves and finally plant death. And then the herbicidal activity was exhibited only under the light condition. Also, chlorophyll loss of D. ciliaris leaf tissues in the light condition was much higher than in the dark condition and then chlorophyll content decreased 82%, 5%, respectively. In conclusion, our results suggest that soil bacteria, isolate G-0299 could be a good candidate for new bio-herbicide and provide a new lead molecule for a more unique herbicide.

On-site Inventory Management Plan for Construction Materials Considering Activity Float Time and Size of a Stock Yard (공정별 여유시간과 야적장 규모를 고려한 건설자재의 현장 재고관리 방안 연구)

  • Kim, Yong Hwan;Yoon, Hyeong Seok;Lee, Jae Hee;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • The inventory of many materials requires a large storage space, and the longer the storage period, the higher the potential maintenance cost. When materials are stored on a construction site, there are also concerns about safety due to the reduction of room for movement and working. On the other hand, construction sites that do not store materials have insufficient inventory, making it difficult to respond to demands such as sudden design changes. Ordering materials is then subject to delays and extra costs. Although securing an appropriate amount of inventory is important, in many cases, material management on a construction site depends on the experience of the site manager, so a reasonable material inventory management plan that reflects the construction conditions of a site is required. This study proposes an economical material management method by reflecting variables such as the status of the preceding and following activities, site size, material delivery cost, timing of an order, and quantity of orders. To this end, we set the appropriate inventory amount while adjusting related activities in the activity network, using float time for each activity, the size of the yard, and the order quantity as the main variables, and applied a genetic algorithm to this process to suggest the optimal order timing and order quantity. The material delivery cost derived from the results is set as a fitness index and the efficiency of inventory management was verified through a case application.