FUSION MATERIALS AND FUSION ENGINEERING R&D IN JAPAN

  • KOHYAMA A. (Institute of Advanced Energy, Kyoto University) ;
  • KONISHI S. (Institute of Advanced Energy, Kyoto University) ;
  • KIMURA A. (Institute of Advanced Energy, Kyoto University)
  • Published : 2005.10.01

Abstract

Japanese activities on fusion structural materials R&D have been well organized under the coordination of university programs and JAERI/NIMS programs more than two decades. Where, two categories of structural materials have been studied, those are; reduced activation martensitic/ferritic steels (RAFs) as reference material and vanadium alloys and SiC/SiC composite materials as advanced materials. The R&D histories of these candidate materials and the present status in Japan are reviewed with the emphasis on materials behavior under radiation damage. The importance of IFMIF and technology development for blanket R&D including ITER-TBRG activity is emphasized and the current status of those activities in Japan is also presented.

Keywords

References

  1. H. IMURA, J. Nucl. Mater. 329-333 (2004)1 https://doi.org/10.1016/j.jnucmat.2004.04.338
  2. S. MATSUDA, IAEA-CN-94, 19th Fusion Energy Conference, Lyon, France, 14-19 October 2002, FTP/20(2002)
  3. T. MUROGA et al., J. Nucl. Mater. 307-311 (2002) 547 https://doi.org/10.1016/S0022-3115(02)01253-9
  4. A. KOHYAMA et al., IAEA-CN-94, 19th Fusion Energy Conference, Lyon, France, 14-19 October 2002, FTP1/02 (2002)
  5. M. ENOEDA et al., in this proceedings
  6. A. KIMURA et al., Nucler Fusion. 43 (2003)1246 https://doi.org/10.1088/0029-5515/43/10/027
  7. M. ANDO et al., J. Nucl. Mater. 329-333 (2004) 328 https://doi.org/10.1016/j.jnucmat.2004.04.290
  8. E. WAKAI et al., J. Nucl. Mater. 318 (2003)267 https://doi.org/10.1016/S0022-3115(03)00122-3
  9. S. W. KIM et al., J. Nucl. Mater., 329-333 (2004) 248-251 https://doi.org/10.1016/j.jnucmat.2004.04.019
  10. T. HIROSE, et al., J. Nucl. Mater., 329-333 (2004) 324-327 https://doi.org/10.1016/j.jnucmat.2004.04.047
  11. H. SAKASEGAWA et al., Fusion Engineering and Design 61-62, pp. 671-675. (2002) https://doi.org/10.1016/S0920-3796(02)00290-9
  12. S. UKAI et al., ISIJ International, Vol.43 (2003), No.12, p.2038S https://doi.org/10.2355/isijinternational.43.2038
  13. R. J. KURTZ et al., J. Nucl. Mater. 329-333 (2004) 47 https://doi.org/10.1016/j.jnucmat.2004.04.299
  14. W. R. JOHNSON et al., J. Nucl. Mater. 256-263 (1998) 1425 https://doi.org/10.1016/S0022-3115(98)00209-8
  15. T. MUROGA et al., J. Nucl. Mater. 283-287 (2000) 711 https://doi.org/10.1016/S0022-3115(00)00281-6
  16. M. M. POTAPEMKO et al., Proc. IEA/JUPITER-II Workshop on Critical Issues of Vanadium Alloy Development for Fusion Reactor Applications, Dec 15-16, 2003, NIFS, Japan
  17. T. NAGASAKA et al., Fusion Science and Technology, 44 (2003) 465 https://doi.org/10.13182/FST03-A379
  18. T. NAGASAKA et al., J. Nucl. Mater. 329-333 (2004) 1539 https://doi.org/10.1016/j.jnucmat.2004.04.171
  19. T. NAGASAKA et al., to be published
  20. K. FUKUMOTO et al., J. Nucl. Mater. 307-311 (2002) 610 https://doi.org/10.1016/S0022-3115(02)01216-3
  21. M. KOYAMA et al., J. Nucl. Mater. 329-333 (2004) 442 https://doi.org/10.1016/j.jnucmat.2004.04.092
  22. M. FUJIWARA et al., J. Nucl. Mater. 307-311 (2002) 601 https://doi.org/10.1016/S0022-3115(02)01101-7
  23. M. FUJIWARA et al., J. Nucl. Mater. 329-333 (2004) 452 https://doi.org/10.1016/j.jnucmat.2004.04.090
  24. K. SAKAI et al., J. Nucl. Mater. 329-333 (2004) 457 https://doi.org/10.1016/j.jnucmat.2004.04.089
  25. S. KOBAYASHI et al., J. Nucl. Mater. 329-333 (2004) 447 https://doi.org/10.1016/j.jnucmat.2004.04.091
  26. B. PINT et al., J. Nucl . Mater. 329-333 (2004) 119 https://doi.org/10.1016/j.jnucmat.2004.04.010
  27. F.KOCH et al., J. Nucl . Mater. 329-333 (2004) 1403 https://doi.org/10.1016/j.jnucmat.2004.04.206
  28. A. SAWADA et al., to be published
  29. Z. YAO et al., J. Nucl. Mater. 329-333 (2004) 1414 https://doi.org/10.1016/j.jnucmat.2004.04.208
  30. Advanced Composite Materials, (MRS, 2002)
  31. L. L. SNEAD et al., Advances in Science and Technology, 33 (2003)129-140
  32. A. KOHYAMA et al., Materials Transaction 45, 51-58 (Japan Institute of Metals, 2004) https://doi.org/10.2320/matertrans.45.51
  33. Advanced SiC/SiC Ceramic Composites, Editors A. Kohyama, M.Singh,, H.T. Lin and Y. Katoh, Ceramics Transactions vol.144(American Ceramic Society, 2002)
  34. A. KOHYAMA, Proceedings of ISASC2004, Korean Ceramics Society (in press)
  35. K. ABE, A. KOHYAMA and S. TANAKA, Annual Progress Report of JUPITER-2 (2003)
  36. A. HASEGAWA et al., J. Nucl. Mater. 329-333 (2004)
  37. Y. KATOH et al., J. Nucl. Mater. 329-333 (2004)
  38. J.S. PARK et al., Proceedings of ISASC2004, Korean Ceramics Society (in press)
  39. T. HINO et al., J. Nucl. Mater. 329-333 (2004)673-677 https://doi.org/10.1016/j.jnucmat.2004.04.193
  40. M. KONOMURA et al., Proceedings of Global 2003 (American Nuclear Society, 2003)
  41. P.COLOMBO et al., Journal of Nuclear Materials 278 (2000) 127-135 https://doi.org/10.1016/S0022-3115(99)00268-8
  42. P. LEMOINE et al., Journal of the European Ceramic Society 16 (1996) 1231-1236 https://doi.org/10.1016/0955-2219(96)00056-8
  43. Proceeding of IAE SiC/SiC Working Group Symposium, Boston, May 2004, Edited by A. Kohyama, R. H. Jones and B. Riccardi, AESJ Press, 2004
  44. H. KURISHITA et al., J. Nucl. Mater. 233-237 (1996) 557 https://doi.org/10.1016/S0022-3115(96)00333-9
  45. T. TAKIDA et al., Mater. Trans., 45 (2004) 143 https://doi.org/10.2320/matertrans.45.143
  46. Y. ISHIJIMA et al., J. Nucl. Mater. 329-333 (2004)
  47. M. Enoeda et al., Nucl. Fusion, 43 (12) (2003) 1837-1844 https://doi.org/10.1088/0029-5515/43/12/026
  48. S. Konishi et al., Fusion Eng. Des., 63-64 (2002) 11-17 https://doi.org/10.1016/S0920-3796(02)00264-8
  49. A.Sagara et al., Fusion Engineering and Design, 29 III (1995) pp.51-56 https://doi.org/10.1016/0920-3796(95)80005-I
  50. S.Toda et al., Fusion Engineering and Design, 63-64 (2002) 405 https://doi.org/10.1016/S0920-3796(02)00195-3
  51. S.Fukada, R.Anderl, A.Sagara, M. Nishikawa, Fus. Sci. Technol.,48(1),(2005)666 https://doi.org/10.13182/FST05-A1013
  52. T. Terai et al., Fus. Engng. and Des. 17 (1991), 237 https://doi.org/10.1016/0920-3796(91)90064-W
  53. S. Nishio et al, 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, November 2004, AEA-CN-FT/P7-35 (2004)
  54. S. Konishi, Fusion. Eng. Des., 69(2003)523-529 https://doi.org/10.1016/S0920-3796(03)00122-4
  55. B.G.Hong, S.Y.Cho, Y.Kim, K.W. Song and KO TBM team, pp.33-40,Introduction to the Advanced Nuclear Technology in Fusion, Fuels and Materials, edit by S. Konishi et al, AESJ (2005), ISBN 4-89047-130-8
  56. C.S. Kim, ibid pp 99-102,(2005)
  57. D.H. Ahn, ibid pp 109-115,(2005)