• 제목/요약/키워드: materially nonlinear

검색결과 24건 처리시간 0.026초

재료적 비선형을 고려한 Ρ-Version 유한요소해석 (Ρ-Version Finite Element Analysis for Material Nonlinearity)

  • 정우성;홍종현;우광성;신영식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성 (Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제30권1호
    • /
    • pp.25-35
    • /
    • 2018
  • 균일 외압을 받는 링 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)을 적용하여 외압강도를 평가하였다. 링 보강 쉘의 기하학적 초기결함의 진폭, 반경 대 두께 비, 링 보강재 간격 대 반경비 등이 외압강도에 미치는 영향을 분석하였으며, Eurocode 3과 DNV 설계기준에 의한 설계 외압 강도와 유한 요소해석으로 구한 외압강도를 비교 평가하였다. 기하학적 초기결함의 형상은 선형탄성 좌굴해석에 의한 좌굴모드를 적용하였으며 보강 쉘의 반경 대 두께 비는 250~500범위를 고려하였다.

FEM에 의한 자동차부품용 고무커버에 관한 해석 (FEM Analysis of Rubber Cover for Automotive Parts)

  • 김상우;김인관;강태호;김영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

$C^{\circ}$-계층적 평판요소에 의한 경사평판의 비선형 해석 (Nonlinear Analysis of Skew Plates by $C^{\circ}$-Hierarchical Plate Element)

  • 우광성;허철구;박진환
    • 한국전산구조공학회논문집
    • /
    • 제14권1호
    • /
    • pp.65-76
    • /
    • 2001
  • 본 연구의 목적은 평판의 모서리 둔각이 135도까지를 갖는 재료적 비선형 경사평판을 해석하기 위해 C°-계층적 평판요소를 개발하는 것이다. 기하학적 변환을 통해 경사진 경계조건은 직각좌표계의 좌표변환을 이용하여 해결할 수 있다. 여기서, 경사경계는 경사진 변 전체 또는 경사교량의 교좌위치와 관련된 몇 개의 선택지점만을 고려할 수 있게 하였다. 이 목적을 위해 경사교량의 교좌장치의 이동방향을 설명할 수 있도록 1차 전단변형을 갖는 Reissner/Mindlin 평판이론에 기초를 둔 5-자유도 경사평판요소가 정식화되었다. 한편, 평판의 극한내하력을 추정하기 위해 von-Mises 항복기준에 기초를 둔 소성유동법칙을 갖는 증분소성이론이 채택되었다. 또한, ADINA 소프트웨어에 의한 h-version 모델과 제안된 p-version 모델을 사용하여 경사각, 경계조건과 하중의 변화에 따른 영향을 조사하였다. 해석결과는 이론값과 문헌에 보고된 수치해석값과 비교되었다. 자유도 수에 따른 정확도를 비교기준으로 한다면, 본 연구에서 제안된 해석모델은 지금까지 개발된 가장 효율적 도구의 하나라고 할 수 있다.

  • PDF

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

자동차용 고무 Dust Cover의 거동에 관한 연구 (An Analysis of Rubber Dust-Cover for Automotive Parts)

  • 강태호;김인관;김영수
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Durability of rubber dust cover in the ball joint for automotive suspension parts is analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. The deformation behavior of dust cover is analysed by using the commercial finite element program MARC. In the study, this program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber is modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen. The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber cover.

Patch loading resistance prediction of plate girders with multiple longitudinal stiffeners using machine learning

  • Carlos Graciano;Ahmet Emin Kurtoglu;Balazs Kovesdi;Euro Casanova
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.419-430
    • /
    • 2023
  • This paper is aimed at investigating the effect of multiple longitudinal stiffeners on the patch loading resistance of slender steel plate girders. Firstly, a numerical study is conducted through geometrically and materially nonlinear analysis with imperfections included (GMNIA), the model is validated with experimental results taken from the literature. The structural responses of girders with multiple longitudinal stiffeners are compared to the one of girders with a single longitudinal stiffener. Thereafter, a patch loading resistance model is developed through machine learning (ML) using symbolic regression (SR). An extensive numerical dataset covering a wide range of bridge girder geometries is employed to fit the resistance model using SR. Finally, the performance of the SR prediction model is evaluated by comparison of the resistances predicted using available formulae from the literature.

p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정 (Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification)

  • 안재석;박진환;우광성
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.375-387
    • /
    • 2004
  • 팻취 보강된 철근콘크리트 구조물 해석을 위한 p-version 비선형 유한요소 모델이 제시되었다. 이방성 적층평판이론에 기초를 둔 제안된 모델은 Total Lagrangian기법에 기초한 von Karman의 대변형-소변형률 이론과 증분소성이론(incremental theory of plasticity)을 적용하였다. 콘크리트의 경화법칙(hardening rule)과 그에 따른 파괴기준을 고려하고, 단부 계면 층분리 모델(plate-end interfacial debonding model) 즉, 보강판 끝 부분에서의 콘크리트 탈락에 대한 기준으로서 Oehlers Model과 Raoof and Zhang Model을 사용하였다. 콘크리트는 두께 방향으로 층상화기법(layered model)이 이용되며, 철근과 보강판은 환산층(smeared reinforcing layer)으로 계산되도록 하였다 적분형 르장드르 다항식이 형상함수로 사용되며, 절점에서의 응력값 산출을 위해 Gauss Lobatto 수치적분법을 사용하였다. 본 연구의 목적은 p-version 유한요소법을 사용하여 RC구조물에 대한 수피해의 정확도 및 모델의 단순성을 높인 수 있도록 하였다. 따라서, 철근과 콘크리트모델에 대한 이론적 근거는 기존의 연구문헌에 근거를 두었으며, 수치해석의 적정성은 팻취 보강된 RC보와 슬래브에 대한 문헌의 실험치 및 해석치와 비교 분석되었다.

A finite strip method for elasto-plastic analysis of thin-walled structures under pure bending

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제8권3호
    • /
    • pp.233-242
    • /
    • 1999
  • In the present study, the elasto-plastic analysis of prismatic plate structures subjected to pure bending is carried out using the finite strip method. The end cross-sections of the structure are assumed to remain plane during deformation, and the compatibility along corner lines is ensured by choosing proper displacement functions. The effects of both the initial geometrical imperfections and residual stresses due to fabrication are included in the combined geometrically and materially nonlinear simulation. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modelling the elasto-plastic behavior of material. Newton-Raphson iterations are carried out as the rotation of the end cross sections of the structure is increased step by step. The parameter representing the overall axial strain of structure is adjusted constantly during the iteration process in order to eliminate the resulting overall axial force on any cross-section of the structure in correspondence with the assumption of zero axial force in pure bending. Several numerical examples are presented to validate the present method and to investigate the effects of some material and geometrical parameters.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.