• 제목/요약/키워드: material transport

검색결과 1,161건 처리시간 0.032초

한강 하류부에서의 오염물질의 거동특성 연구 (A Study on the Contaminant Transport Characteristics in Han River)

  • 김형일;이종설
    • 한국수자원학회논문집
    • /
    • 제31권1호
    • /
    • pp.85-93
    • /
    • 1998
  • 본 연구는 도시하천인 한강 하류부에 2차원 유한요소모형을 적용하여 하천의 수리학적 특성에 따른 오염물질의 거동특성을 모의하고 예측하기 위한 것으로서 흐름상태를 분석할 수 있는 RMA-2V 모형과 동적 수질예측이 가능한 RMA-4모형을 이용하였다. 2차원 유한요소모형을 사용하여 수질의 거동특성을 모의하여 본 결과 유량 및 유속의 변화는 오염물질의 이송확산에 큰 영향을 미치는 것으로 나타났으며, 탄천 및 중랑천은 대상구역내의 수질오염에 큰 영향을 미치는 것으로 나타났다. 불시의 오염사고가 발생했을 때 오염물질이 하류부로 이동함에 따라 최대 COD 값은 감소하고,오염물질이 영향을 미치는 지속기간은 커지는 것을 알 수 있었고, 전체적으로 좌·우안의 오염물질의 농도차가 크게 나타났으며, 이로써 한강과 같은 대하천의 경우 실시간 예측시 2차원 해석이 필요한 것으로 나타났다.

  • PDF

뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구 (A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane)

  • 이철호;최순욱;강태호;장수호
    • 터널과지하공간
    • /
    • 제26권3호
    • /
    • pp.212-219
    • /
    • 2016
  • 뿜칠 방수 멤브레인은 숏크리트 사이에 시공되어 라이닝 크랙을 통한 누수를 방지하는 목적으로 최근 유럽 국가를 중심으로 시공 사례가 늘어가고 있다. 뿜칠 방수 멤브레인은 방수 시트에 비해 복잡한 단면에도 시공이 용이하기 때문에 이용 사례가 늘어갈 것으로 전망된다. 뿜칠 방수 멤브레인은 폴리머로 구성된 재료로서 투수성이 매우 낮지만 수분의 이동에 의해 포화가 되고 이로인해 콘크리트 재료에 간극수압이나 동결 문제를 일으킬 수 있는 우려가 있다. 본 연구에서는 뿜칠 방수 멤브레인의 수분이동과 계절변화를 고려하여 숏크리트 라이닝의 열-습도 전달 장기 해석을 수행하였다. 해석을 통해 뿜칠 방수 멤브레인의 수분 흡수 작용과 수분 이동으로 인한 상대습도 변화를 고찰할 수 있었으며 이로 인한 장기적 변화를 모사할 수 있었다.

벌크화물 수송실태 분석 (Analysis of bulk freight transportation)

  • 이석;김영주;김경태;권용장;김승모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3278-3288
    • /
    • 2011
  • Bulk freight is transported by a freight car, ship and tank lorry without packaging in a state of particles or powders. In korea, the main bulk freight include oil, grain, coal, cement, iron ore and these are occupied nearly 30% of the volume of gross domestic freight transportation. Therefore it is in important to transport efficient bulk freight transport system for the improvement of national distribution competitive as raw material for industry. Generally environment-friendly transfer modes such as railway and sea transport play an important role in bulk freight transport due to the mass transfer characteristics of bulk freight. This study is carried out for examining the problem of oil, grain, coal, cement, ore transportation through analyzing distribution flow of items and understanding characters of transfer modes.

  • PDF

SF$_6$+$N_2$혼합기체의 전자 이동속도 측정 및 수송계수 해석 (The measurement of electron drift velocity and analysis of transport coefficients in SF$_6$+$N_2$ gas)

  • 하성철;하영선
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권6호
    • /
    • pp.462-472
    • /
    • 1994
  • In this paper, electron drift velocity is experimentally measured in SF$_{6}$+N$_{2}$ Gas by induced cur-rent method and quantitaive production of electron transport coefficient is calculated by backward-prolongation of Boltzmann equation. Then electron energy distribution function and attachment coefficients are calculated. This paper can use the electron drift velocity by experimentally and the electron transport coefficient by calculated as a basic data of mixed Gas by comparing and investigating.g.

  • PDF

초음파 진동을 이용한 마찰 및 음향부상에 의한 물체의 수송 (Friction-Based and Acoustically-Levitated Object Transport Using Ultrasonic Vibration)

  • Byoung-Gook Loh;Yong-Kuk Park
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.590-599
    • /
    • 2003
  • In this study. object transport method based on ultrasonic flexural vibration is presented. Ultrasonic vibration generates ultrasonic traveling waves on the surface of elastic medium. Objects are transported through the interaction with traveling waves propagating in medium. Two types of transport methods are studied: frictional drive and acoustic levitation. With frictional drive, objects are transported in contact with the beam in the opposite direction of wave propagation whereas with acoustic levitation, objects are acoustically levitated above the beam surface and transported in the wave propagation direction. Transport characteristics are experimentally investigated using objects of different shapes and sizes. The transition from acoustic levitation mode to frictional drive mode is also examined. and it is found to occur when the ratio of mass to area of an object exceeds the threshold ratio of mass to area. It is envisaged that this feasibility study will serve as a stepping-stone for ultrasonic vibration to become an effective industrial material handling device in the future.

Reverse-bias Leakage Current Mechanisms in Cu/n-type Schottky Junction Using Oxygen Plasma Treatment

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.113-117
    • /
    • 2016
  • Temperature dependent reverse-bias current-voltage (I-V) characteristics in Cu Schottky contacts to oxygen plasma treated n-InP were investigated. For untreated sample, current transport mechanisms at low and high temperatures were explained by thermionic emission (TE) and TE combined with barrier lowering, respectively. For plasma treated sample, experimental I-V data were explained by TE or TE combined with barrier lowering models at low and high temperatures. However, the current transport was explained by a thermionic field emission (TFE) model at intermediate temperatures. From X-ray photoemission spectroscopy (XPS) measurements, phosphorus vacancies (VP) were suggested to be generated after oxygen plasma treatment. VP possibly involves defects contributing to the current transport at intermediate temperatures. Therefore, minimizing the generation of these defects after oxygen plasma treatment is required to reduce the reverse-bias leakage current.

Device characteristics of blue phosphorescent organic light-emitting diodes depending on the electron transport materials

  • Lee, Hyun-Koo;Ahn, Hyuk;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.219-222
    • /
    • 2011
  • Iridium-(III)-bis[(4,6-di-fluorophenyl)-pyridinate-N,$C^2$' ]picolinate-based blue phosphorescent organic light-emitting diodes with different electron transport materials were fabricated. Each electron transport material had different electron mobilities and triplet energies. The device with 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene had the highest external quantum efficiency (20.1%) and luminous current efficiency (33.1 cd/A) due to its high electron mobility and triplet energy. The operational stability of each device was also compared with that of the others. The device with 2,2',2"(1,3,5-benzenetriyl)tris-(1-phenyl-1H-benzimidazole) was found to have a longer lifetime than the other devices.

Double Hole Transport Layers Deposited by Spin-coating and Thermal-evaporating for Flexible Organic Light Emitting Diodes

  • Chen, Shin Liang;Wang, Shun Hsi;Juang, Fuh Shyang;Tsai, Yu Sheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.741-744
    • /
    • 2007
  • The research applied the processes of spin-coating and thermal-evaporating in proper order to deposit the hole transport material N,N'-Bis(naphthalen-1-yl)- N,N'-bis(phenyl)-benzidine (NPB) on the ITO substrate to make flexible organic light emitting diodes (FOLED) with double hole transport layer.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Investigation of bar parameters occurred by cross-shore sediment transport

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권2호
    • /
    • pp.277-286
    • /
    • 2013
  • Cross-shore sediment transport is very important factor in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial base slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical of sediment transport rate and considerable characteristics of beach profiles under storm conditions and bar parameters affecting on-off shore sediment transport are investigated for the beach materials with the medium diameter of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. Non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.