• Title/Summary/Keyword: material topology optimization

Search Result 167, Processing Time 0.022 seconds

Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.581-595
    • /
    • 2010
  • This paper presents topology optimization of geometrically and materially nonlinear structures using a bi-directional evolutionary optimization (BESO) method. To maximum the stiffness of nonlinear structures under prescribed design load, the complementary work is selected as the objective function of the optimization. An optimal design can be obtained by gradually removing inefficient material and adding efficient ones. The proposed method can be applied to a series of geometrically and/or materially nonlinear structures. The results show considerable differences in topologies and stiffness of the optimal designs for linear and nonlinear structures. It is found that the optimal designs for nonlinear structures are much stiffer than those for linear structures when large design loads (which result in significantly nonlinear deformations) are applied.

Shape Extraction of Stiffeners of H-beam using Topologically Structural Optimization (위상최적설계를 이용한 H형강 부재의 스티프너 형상탐색)

  • Jung, Wonsik;Banh, Thien Thanh;Lee, Dongkyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.

Reliability-Based Topology Optimization Based on Bidirectional Evolutionary Structural Optimization (양방향 진화적 구조최적화를 이용한 신뢰성기반 위상최적화)

  • Yu, Jin-Shik;Kim, Sang-Rak;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.529-538
    • /
    • 2010
  • This paper presents a reliability-based topology optimization (RBTO) based on bidirectional evolutionary structural optimization (BESO). In design of a structure, uncertain conditions such as material property, operational load and dimensional variation should be considered. Deterministic topology optimization (DTO) is performed without considering the uncertainties related to the design variables. However, the RBTO can consider the uncertainty variables because it can deal with the probabilistic constraints. The reliability index approach (RIA) and the performance measure approach (PMA) are adopted to evaluate the probabilistic constraints in this study. In order to apply the BESO to the RBTO, sensitivity number for each element is defined as the change in the reliability index of the structure due to removal of each element. Smoothing scheme is also used to eliminate checkerboard patterns in topology optimization. The limit state indicates the margin of safety between the resistance (constraints) and the load of structures. The limit State function expresses to evaluate reliability index from finite element analysis. Numerical examples are presented to compare each optimal topology obtained from RBTO and DTO each other. It is verified that the RBTO based on BESO can be effectively performed from the results.

Reliability-Based Topology Optimization Using Performance Measure Approach (성능함수법을 이용한 신뢰성기반 위상 최적설계)

  • Ahn, Seung-Ho;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, a reliability-based design optimization is developed for the topology design of linear structures using a performance measure approach. Spatial domain is discretized using three dimensional Reissner-Mindlin plate elements and design variable is taken as the material property of each element. A continuum based adjoint variable method is employed for the efficient computation of sensitivity with respect to the design and random variables. The performance measure approach of RBDO is employed to evaluate the probabilistic constraints. The topology optimizationproblem is formulated to have probabilistic displacement constraints. The uncertainties such as material property and external loads are considered. Numerical examples show that the developed topology optimization method could effectively yield a reliable design, comparing with the other methods such as deterministic, safety factor, and worst case approaches.

Topology Optimization of Cylinder Block using Component Mode Synthesis (구분모드합성법을 이용한 실린더블록의 위상 최적 설계)

  • 윤성호;윤영근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2003
  • Vibration analysis using component mode synthesis method was carried out to identify that to some extent each component contributed to the whole vibration of a powertrain consisting of several components. This analysis helped decide the component to be modified to reduce the powertrain weight, without degrading its current vibration characteristics. As a result, a cylinder block was chosen as a redesign object. Topology optimization analysis was performed to design the topology of the cylinder block whose flange connected with the transmission was chosen to be the design domain. After all, a new prototype of cylinder block was manufactured based on the analysis results for the verification experiment. It was confirmed from the analytical and experimental results that u optimally designed cylinder block had an advantage over the current one in the powertrain weight, with the powertrain vibration characteristics improved slightly.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

An Application of Topology Optimization for Strength Design of FPSO Riser Support Structure (FPSO Riser 지지 구조의 강도설계에 대한 위상최적화 응용)

  • Song, Chang-Yong;Choung, Joon-Mo;Shim, Chun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.153-160
    • /
    • 2010
  • This paper deals with the topology optimized design of the riser support structures for floating production storage and offloading units (FPSOs) under global and local loading conditions. For a preliminary study and validation of the numerical approach, a simplified plate under static loading is first evaluated with the representative topology optimization methods, the Homogenization Design Method (HDM) and Density Method (DM) or Simple Isotropic Material with Penalization (SIMP). In the context of the corresponding riser support structures, the design problem is formulated such that structure shapes based on design domain variables are determined by minimizing the compliance subject to a mass target, considering the stress criterion. An initial design model is generated based on an actual FPSO riser support configuration. The topology optimization results present improved design performances under various loading conditions, while staying within the allowable limit of the offshore area.

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

Optimal Design of Nonlinear Coupled Multiphysics Structural Systems using The Element Connectivity Parameterization (복합 물리 시스템 위상 최적설계를 위한 요소 연결 매개법)

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1017-1022
    • /
    • 2004
  • Though the standard element density-based topology optimization method has been applied for the optimal design of multiphysics systems, some theoretical problems, such as material interpolation, undershoot temperature prediction, and unstable elements, still remain to be overcome. The objective of this investigation is to present a new topology optimization formulation based on the element connectivity parameterization (ECP) in order to avoid the numerical problems in multiphysics system design and improve optimization results. To show the validity of the proposed approach, the designs of an optimal thermal dissipation and an electro-thermal-compliant actuator were considered.

  • PDF

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.