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— Abstract Ir

This paper presents a reliability-based topology optimization (RBTO) based on bidirectional evolutionary structural
optimization (BESO). In design of a structure, uncertain conditions such as material property, operational load and
dimensional variation should be considered. Deterministic topology optimization (DTO) is performed without
considering the uncertainties related to the design variables. However, the RBTO can consider the uncertainty variables
because it can deal with the probabilistic constraints, The reliability index approach (RIA) and the performance measure
approach (PMA) are adopted to evaluate the probabilistic constraints in this study. In order to apply the BESO to
the RBTO, sensitivity number for each element is defined as the change in the reliability index of the structure due
to removal of each element. Smoothing scheme is also used to eliminate checkerboard patterns in topology optimization.
The limit state indicates the margin of safety between the resistance (constraints) and the load of structures. The limit
State function expresses to evaluate reliability index from finite element analysis. Numerical examples are presented
to compare each optimal topology obtained from RBTO and DTO each other. It is verified that the RBTO based
on BESO can be effectively performed from the results.
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1. Introduction

Design variables such as material property, external
load and dimensional variation may have uncertainties
in actual designs due to errors in manufacturing process
and actual working state. Since deterministic dcsign op-
timization (DO) can not consider the effect of the uncer-
tainties on objective function or constraint, the reliabi-
lity of an optimum design to satisfy the given constraint
becomes degenerated. In RBDO, probabilistic constra-
ints are formulated so as to construct approximated li-
near (or quadratic) functions to closely represent the
nonlinear limit state functions for the reliability index
(or safety index) calculation and optimization by using
the appropriate transformations" ™.

There are two methods to perform reliability analysis,
which are sampling and fast probability integration me-

67D a5 a typical sampling

thods. Monte Carlo simulation
method uses response function of a system as it is, so
that this method is relatively simple, easy and accurate
comparing to other reliability analysis techniques. But
it requires so many numbers of experiments or simula-
tions to secure accuracy of reliability analysis. Fast pro-
bability integration method is to obtain reliability index
as a relative index of failure probability by approxima-
ting response function of a system as linear or parabolic
functions. There are two typical approaches(s) in the fast
probability integration method. One is reliability index
approach (RIA) with reliability constraint expressed by
reliability index. The other is performance measure app-
roach (PMA), which calculates probabilistic constraint
using the inverse function of reliability index*'?.

Structural problems are considered for topology opti-

mization in this paper. Homogenization"'” and density

¥ methods are very well known topology

distribution
optimization methods. Another topology optimization
technique, ESO"*" (evolutionary structural optimiza-
tion) method has been developed by Xie and Steven.
As ESO considers only removing elements and those

removed ones cannot be brought back in the later evo-
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lution, the final topology must be affected by the his-
tory of the previous evolution. It is known that the op-
timal topology might be differently obtained, according
to removal ratio of elements and the element number
of the initial design. BESO allows for the elements to
be added as well as removed, so that the final optimal
topology can be reached to almost the same topology.
As the result, BESO a clear and robust indication of
structural efficiency of the resulting topologies. Also,
BESO is more flexible in choosing the initial design,
and any design complying with the loading and boun-
dary conditions can be used as an initial design(w).
Many researches on RBTO (reliability-based topology
optimization) has been published in recent years"’™'.
Since RBTO is strongly dependent on topology optimi-
zation techniques, it can be expected that the better re-
sult can be obtained when BESO is used rather than ESO.
But since RBTO based on BESO has not been reported
yet, RBTO based on BESO is studied in this paper.
Sensitivity number, which is a measure on element re-
moval in BESO, is defined by reliability index. And
AFORM (advanced first order reliability method)® is
used for calculating sensitivity number in this paper. In
order to verify whether RBTO based on BESO is suc-
cessfully applied for obtaining an optimal topology or
not, RBTO for a short cantilever and MBB beams is
performed under the stiffness constraint in the case of
having uncertainties of material property, applied load
and thickness. Then, each optimal topology obtained
from RBTO and DTO(deterministic topology optimiza-
tion) are compared each other. In order to calculate the
sensitivity number defined by reliability index, finite
element analysis is performed by using MATLAB®”.
Limit state function is formulated to evaluate reliability

index from finite element analysis.

2. RBDO

Whereas, DO problem is formulated by using deter-
ministic constraint, reliability-based design optimization
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problem is formulated by using probabilistic constraint
as the following Eq. (1) to consider uncertainties of
design variables.

Min,
S.t.

Sf(d)

P[G,(d,x)<0]S P, (1)

where, f is the objective function, d is the design
variable, and z is the random variables vector. Pro-
babilistic constraints are described by the ith limit state
function, G(d,x) - P is the probability of failure, and 7,
is the target probability of failure. Probabilistic const-
raint means that the probability of failure of a system
must be smaller than the target probability of failure.
The probability of failure of a system indicates the pro-
bability not to satisfy the constraint, that is, to violate
the constraint. As one of the possible topology optimi-
zation problems, the objective function, f, is chosen as
the volume.

2.1 Reliability Index Approach(RIA)

When probabilistic constraints are estimated in terms
of the reliability index, the probability structural design
optimization of Eq. (1) may be expressed as

Min.
S.t.

Volume

BE P 2

where, 8 is the reliability index. §,,,,,, is the target
reliability index. In order to evaluate the probabilistic
constraint for RIA, nested optimization loop is nece-
ssary. The definition of reliability index is the mini-
mum distance form origin to approximate limit state
function. Therefore the reliability index 8 is formulated
as an optimization problem with an equality constraint
in U-space as follows

B=u=vuTu

G(u) =0

Min

S.t. (3)
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where, u is an uncertainty variable transformed into
a standard normal distribution coordinate system. 8 is
the reliability index, G{u) is the limit state function in
U-space. The optimum point on the failure surface is
called the most probable point (MPP), “:;<u>=o Either an
MPP search algorithm that is specifically developed for
first-order reliability analysis or general optimization
algorithms, SLP or SQP etc., can be used to solve this
equation. In this paper, the advanced first order reli-
ability method™? is employed to perform reliability
analyses in RIA.

2.2 Performance Measure Approach (PMA)®#?

Reliability analysis in PMA is formulated as the in-
verse of reliability analysis in RIA. The probabilistic
performance measure G(u) is obtained from a nonlinear
optimization problem in U-space as

Min
S.t.

Gu)

Jol=oTu = A @

where, u is an uncertainty variable transformed into
a standard normal distribution coordinate system. Rather
than a general optimization algorithm, the advanced mean
value (AMV), conjugate mean value (CMV), and hy-
brid mean value (HMV) methods™*¥ are commonly used
to solve the problem in Eq. (4), since they do not re-
quire a line search. In this paper, the above three me-
thods are also used to solve the inverse problem in
PMA.

3. Sensitivity Analysis

3.1 Sensitivity Number for DTO

In the finite element method, the static behavior of

(15,16)

a structure is represented by

[K]{6} = {P} (5)
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where [K] is the global stiffness matrix, {6} is the
global nodal displacement vector, and {P} is the nodal
load vector.

The strain energy of the structure, which is defined as

| SRR
C=S{PY () ©

is commonly used as the inverse measure of the over-
all stiffness of the structure. It is obvious that maxi-
mizing the overall stiffness is equivalent to minimizing
the strain energy.

Consider the removal of the i-th element from a st~
ructure comprising n finite elements. The stiffness mat-
rix will change by [AK]=[K-[K]=-[K] , where [K7] is
the stiffness matrix of the resulting structure after re-
moval of the i-th element and [K'] is the stiffness matrix
of the i-th element. It is assumed that the removal of
the element has no effect on the load vector {F}. By
ignoring a higher order term, we can find the change
of the displacement vector from Eq. (5) as

{a5} = -[K]'[AK]{S} %)

From Eq. (6) and (7), the change of strain energy can
be expressed by the following.
AC = %{P}T[Aé‘]
1 S
= —(EJ{P}I [KT'[AK){S}

=%{6*}f[1<"1{6"} ®

where {6’} is the displacement vector of the i-th ele-
ment. Therefore, the sensitivity number for a structure
with static stiffness constraint can be defined as Eq. (9).

1 NI AT
@, m[wi){é‘} [K ]{b } (l = 1,2,“..,’7) (9)
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This indicates the change in the strain energy due to
the removal of the i-th element. It should be noted that

@

is the element strain energy. Both C and o are
always positive values. In general, when an element is
removed, the stiffness of a structure reduces and corre-
spondingly the strain energy increases. To achieve this
objective through element removal, it is obviously most
effective to remove the element which has the lowest

value of «;, so that the increase in C is minimum.

Checkerboard patterns are quite common in various
finite element based structural optimization techniques.
It causes severe numerical errors in topology optimi-
zation. To overcome this problem, an intuitive smoo-

Y and checkerboard patterns occurrence

(26)

thing scheme
decision algorithm'™’ are used in this study. It is clear
that the second order scheme in the smoothing scheme
may provide a better correction to these numerical ins-
tabilities than the first order scheme. Therefore, the se-

cond order scheme was implemented.

3.2 Sensitivity Number for RBTO

Limit state function for calculating the reliability index
for a structure with displacement constraint is defined
from Eq. (10) as follows.

&= 5max —5allow
= {I"} {P} - é‘allnw (10)
where, g7is the limit state function. 4, is the maxi-

mum displacement. d,,,,, is the allowable displacement.

allow
{r} is the column vector consisted of the elements of
column in [K]'1 corresponding to the degree of freedom
of the node where the maximum displacement occurs.
The reliability index can be calculated by solving opti-
mization problem defined as Eq. (5) by using Eq. (10)
at that time.

The displacement vector when the i-th element is
removed is expressed as Eq. (11) from Eq. (7), which
indicates the change of displacement vector due to the
removal of the i-th element.
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{8} = {0} +{Ad}
=[K1'{P} - [K]'[AK}{5} (11)
The limit state function due to the i-th element re-
moval is defined by the following.

gi 36,“5

allow

={rH{P} - {r}[AK]{5} -4,

o (12)

The reliability index can be calculated by solving
optimization problem defined as Eq. (5) by using Eq.
(12) when the i-th element is removed. Since the stiff-
ness of a structure is reduced as an element is removed,
probability satisfying the stiffness constraint due to an
element removal is also reduced. In order to obtain the
probability satisfying the stiffness constraint due to an
element removal, it is known that the element with the
smallest value of the change of the reliability index
should be removed.

Therefore, the sensitivity number o' for RBTO can
be defined as the change of the reliability index when

the i-th element is removed.

(13)

where, 3 is the reliability index for the present topology,
and 4 is the reliability for the topology after removing
the i-th element. RBTO for a structure is performed
through the following procedure””. And a flowchart for
RBTO based on BESO is shown in Fig. 1.

Step 1. Discretise the structure using a fine mesh of
finite elements.

Step 2. Perform the finite element analysis for the
given load.

Step 3. Calculate the reliability index 8 for the pre-
sent topology by using Eq. (3) and (10) for each element.

Step 4. Calculate the sensitivity numbers, i.e. the chan-
ge of the reliability index due to the i-th element remo-
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Discretise the structure using finite
element method

T
Y

[ Finite element analysis ‘

i
lObtain the global stiffness matrix [

)
I Obtain the limit state function, G l

I

l Reliability analysis using RIA and PMA, 8 l

I

Calculate the sensitivity number for RBTO,
a=p-f

|

Remove and Add the element with the lowest sensitivity number

Remave : a'Sak Add: a'ral

NO

Satisfy the given constraint?

Fig. 1 Flowchart of reliability-based topelogy optimi-
zation based on BESO

val by use of Eq. (13) for each element.

Step 5. Remove and add some elements with the sma-
llest sensitivity numbers due to the threshold sensitivity
numbers for removing and adding elements. Removing
constraint is @ <@ and adding constraint is a'<ay,.

Step 6. Repeat step 3 to step 5 until the probability
constraint (Eq. (3) and Eq. (4)) is satisfied.

4, Numerical Examples

4.1 RBTO for a Short Cantilever Beam

RBTO and DTO for the cantilevered beam subjected
to applied load at the right end as shown in Fig. 2 are
performed, and each optimal topology obtained from
RBTO and DTO are compared each other. The dimen-



Jin-Shik Yu - Sang-Rak Kim - Jae-Yong Park - Seog~Young Han

P=300kN® h=010m

L=0.16m _]m“

r'l

”
*

Fig. 2 Design domain for a cantilever beam
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Fig. 3 Optimal topology of DTO for the cantilever
beam

sions of the beam are L=0.16m, h=0.10m and t=0.005m.
The properties of the material are E=200GPa, Poisson’s
ratio v=0.3. The applied load at the free end is P=300
kN. The displacement constraint is that the maximum
displacement at the free end should be less than 1.5mm.
Design domain was divided into 32x20 rectangular
quadrilateral elements. BESO is used for topology
optimization. RIA and PMA are used for RBTO. ARmax
and ER in performing BESO are defined as 5% and 1%,
respectively. ARmna and ER indicate the maximum addi-
tional element and element removal ratios, respectivelym).

In order to perform RBTO, the probabilistic variables
defined in this problem are assumed that they have
normal distribution characteristics and 10% standard
deviations with respect to each average value, and are
independent in probability each other. The formulation
of DTO for this example is as follows.

Volume
G = é‘max - é;xllow SO

Min.

St (14

534

(c) CMV (d) HMV

Fig. 4 Optimal topology of RBTO for the cantilever
beam for one uncertainty variable (E)

Table 1 One uncertainty variable (E)

Rehabxl(lg index, stpl?;:)ement Volume
RIA 3.015 1411 41.25%
AMV 2.994 1.401 41.87%
CMV 3.002 1.365 41.87%
HMV 3.002 1.365 41.87%
DTO 1.289 1.611 37.81%
where, §,,, is the maximum displacement of the

and ¢ is set to be 1.5,

allow

present topology,

Target reliability index, f,,,,, is defined as 3, and
the formulation of RBTO is same as Eq. (2). Proba-
bility of failure corresponding the target reliability in-
dex 3 in Eq. (2) is F;=0.136%. Fig. 3 shows the result
of DTO with the removal ratio 1% for the given pro-
blem.

In the case of one uncertainty variable of Young’s
modulus E, the results of RBTO are shown in Fig. 4
and summarized in Table 1 compared with that of DTO.
Optimal topologies having reliability indices between
2.994 and 3.015 very close to the target reliability index
3, are obtained by RBTO. And optimal topology in the
case of DTO has the reliability index 1.289 for the
volume of 37.81%. Likewise, the displacements of RBTO
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Fig. 5 Optimal topology of RBTO for the cantilever
beam for three uncertainty variable (E, P, t)

Table 2 Three uncertainty varables (E, P, ¢)

Reliability index, | Displacement
(g P © Volume
RIA 3.002 1.157 50.00%
AMV 3.015 1.154 50.93%
CMV 2.999 1.167 50.62%
HMV 2.999 1.167 50.62%
DTO 1.289 1.611 37.81%

show less than that of DTO as expected. From the re-
sults of Table 1, Fig. 3 and Fig. 4, it is verified that
optimal topologies of RBTO are better than those of
DTO in the case of one uncertainty variable. Also, it
is known that the volume of the optimal topology ob-
tained by RBTO in the case of one uncertainty variable
is larger than that of DTO as expected.

RBTO with three uncertainty variables of Young’s
modulus E, the applied load P and the thickness t is
performed. In order to perform RBTO, the probabilistic
variables defined in this problem are assumed that they
have normal distribution characteristics and 10% stan-
dard deviations with respect to each average value, and
are independent in probability each other. The results
of RBTO are shown in Fig. 5 and summarized in Table
2 compared with that of DTO.
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Fig. 6 Design domain and a half model of MBB beam

Fig. 7 Optimal topology of DTO for the MBB beam

Optimal topology having reliability index 2.999 very
close to the target reliability index 3, is obtained by
RBTO. And optimal topology in the case of DTO has
the reliability index 1.289 for the volume of 37.81%.
Likewise, the displacements of RBTO show less than
that of DTO. From the results of Table 2, Fig. 3 and 5,
it is verified that optimal topology of RBTO is the
better than that of DTO in the case of one uncertainty
variable. Also, it is known that the volume of the op-
timal topology obtained by RBTO in the case of three
uncertainty variable is the larger than that in the case

of one uncertainty variables as expected.

4.2 RBTO for MBB Beam

RBTO and DTO for MBB beam as shown in Fig. 6
are performed, and each optimal topology obtained from
RBTO and DTO are compared each other. The dimen-
sions of the beam are L=0.24m, h=0.04m and t=0.001m.
The properties of the material are E=200GPa, Poisson’s
ratio v=0.3. The applied load at the free end is P=200
N. The displacement constraint is that the maximum
displacement at the center should be less than 1.3mm.
Design domain was divided into 60x20 rectangular qua-
drilateral elements. BESO, RIA and PMA were used for
topology optimization and RBTO, respectively. 4Rmax
and ER in performing BESO are defined as 5% and 3%,
respectively. Fig. 7 shows the result of DTO with the
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((.i) HMV

(c)rCMV

Fig. 8 Optimal topolegy of RBTO for the MBB beam
for one uncertainty variable (E)

Table 3 One uncertainty variable (E)

(c) CMV

Fig. 9 Optimal topology of RBTO for the MBB beam
for three uncertainty variable (E, P, )

Table 4 Three uncertainty variables (E, P, t)

Reliability index, | Displacement Reliability index, | Displacement
®) 0 | Vol ®) @ | Vohme
RIA 3.024 091 55.00% RIA 2.998 0.77 65.33%
AMV 3.109 0.90 56.16% AMV 3.008 0.75 69.50%
CMV 2.999 0.92 56.16% CMV 3.009 0.76 69.50%
HMV 2.999 0.92 56.16% HMV 3.009 0.76 69.50%
DTO 0.768 1.35 34.50% DTO 0.768 1.35 34.50%

removal ratio 1% for the given problem®”,

In the case of one uncertainty variable of Young’s
modulus E, the results of RBTO are shown in Fig. 8
and summarized in Table 3 compared with that of DTO.
Optimal topologies having reliability indices between
2.999 and 3.109 very close to the target reliability index
3, are obtained by RBTO. And optimal topology in the
case of DTO has the reliability index 0.768 for the vol-
ume of 34.50%. Likewise, the displacements of RBTO
show less than that of DTO as expected. From the
results of Table 3, Fig. 7 and Fig. 8, it is verified that
optimal topologies of RBTO are better than that of DTO
in the case of one uncertainty variable, Also, it is known
that the volume of the optimal topology obtained by
RBTO in the case of one uncertainty variable is larger
than that of DTO as expected.

RBTO with three uncertainty variables of Young's
modulus E, the applied load P and the thickness t is
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performed. In order to perform RBTO, the probabilistic
variables defined in this problem are assumed that they
have normal distribution characteristics and 10% stan-
dard deviations with respect to each average value, and
are independent in probability each other. The results
of RBTO are shown in Fig. 9 and summarized in Table
4 compared with that of DTO.

Optimal topology having reliability indices between
2.998 and 3.009 very close to the target reliability index
3, is obtained by RBTO. And optimal topology in the
case of DTO has the reliability index 0.768 for the vol-
ume of 34.50%. Likewise, the displacements of RBTO
show less than that of DTO. From the results of it is
verified that optimal topology of RBTO is the better
than that of DTO in the case of one uncertainty vari-
able. Also, it is known that the volume of the optimal
topology obtained by RBTO in the case of three uncer-
tainty variable is the larger than that in the case of one
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uncertainty variables as expected.

The optimal topologies are very close to each other. It
was found that the change of the reliability index is very
small and very smooth as iteration proceeds. The reliabi-
lity index is more gradually converged with very small
change to the target reliability index as mesh size is smal-
ler. It may result in high expensive computation cost.

5. Conclusions

Reliability-based topology optimization based on bidi-
rectional evolutionary structural optimization, which
provides a clear and robust indication of structural effi-
ciency of the resulting topologies for a short cantilevered
and MBB beams were performed. From the comparison
of the results of RBTO and DTO, the following conclu-

sions are obtained.

(1) It is verified that BESO using RIA and PMA can
effectively be applied to RBTO.

(2) It is known that optimal topology of RBTO is the
better than that of DTO in the case of one and three
uncertainty variables. In other words, the reliability
indices and the displacements of RBTO are larger
and smaller than of DTO in the same volume,
respectively.

(3) It is known that the volume of the optimal topology
obtained by RBTO in the case of one uncertainty
variable is larger than that of DTO as expected.

(4) It is known that the volume of the optimal topology
obtained by RBTO in the case of three uncertainty
variable for the same reliability index is the larger
than that in the case of one uncertainty variables as
expected.

(5) BESO provides a clear and robust indication of
structural efficiency of the resulting topologies.
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