• Title/Summary/Keyword: material softening

Search Result 284, Processing Time 0.022 seconds

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • 제8권2호
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

A reinforced concrete frame element with shear effect

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.57-78
    • /
    • 2010
  • A novel flexibility-based 1D element that captures the material nonlinearity and second order P-$\Delta$ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D planar frames in the modified fiber element framework but can readily be extended to 3D cases. The nonlinear behavior of concrete including cracking and crushing is taken into account through a modified hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete is addressed and objectivity of the response at the material level is attained by using a technique derived from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with experimental results and is demonstrated by some numerical examples.

보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석 (Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth)

  • 김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

9절점 가변형도 쉘요소를 이용한 콘크리트 구조물의 후-정점하중 해석 (A post-peak analysis of concrete structures using a 9-node assumed strain shell element)

  • 이상진;이홍표;서정문
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.59-66
    • /
    • 2001
  • The post-peak analysis of concrete structures is carried out using a nine-node Reissner-Mindlin(RM) shell element which is formulated by using degenerated solid concepts. In order to avoid element deficiencies inherited in the standard RM shell element, assumed strains are adopted in the present shell element. A microscopic material model is adopted to represent the inelastic characteristic of concrete material. In particular, a concrete softening model is introduced to this material model. The arc-length control method is used to trace the post-peak behaviour of concrete structures. From the numerical test of the single-edge-notched beam, the present shell element shows a reasonable agreement with experimental data.

  • PDF

파괴에너지를 고려한 유사취성재료의 혼합모드 균열해석 (Mixed-Mode Fracture Analysis of Quasi-Brittle Material Considering Fracture Energy)

  • 임윤묵;김문겸;조석호;신승교
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권4호
    • /
    • pp.129-137
    • /
    • 2002
  • In this study, mixed-mode fracture behavior is simulated effectively through the numerical method using the axial defomation link elements which can predict the behavior of quasi-brittle material. The behavior of quasi-brittle material is modeled numerically using the exponential tension softening constitutive equation and verified by comparing with the result of published experimental result. In order to verify the mixed-mode fracture behavior through the developed numerical method, analysis of mode I is formulated and the result is compared with those of FEM first, and then mixed-mode analysis is analyzed and compared with existing theories and experimental data. Also the characteristics of fracture behavior is examined through the analysis of crack generation with respect to various mode mixity.

Effects of pressure during the synthesis of petroleum pitch precursors in open and closed systems

  • Choi, Jong-Eun;Ko, Seunghyun;Kim, Jong Gu;Jeon, Young-Pyo
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.95-102
    • /
    • 2018
  • We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately $130^{\circ}C$. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.

WIM 센서 설치에 적합한 실런트 개발을 위한 기초적인 연구 (Fundamental Study on Development of Sealants used for WIM Sensor Installation)

  • 임치수;김두병;김용주;이강훈;이재준
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.17-24
    • /
    • 2017
  • PURPOSES : This study aims to develop a sealant for use in the installation of Weigh-In-Motion (WIM) sensor for asphalt concrete or cement concrete pavements. METHODS : In order to investigate the properties of various sealants that were mixed with latex and carbon fiber, various test methods were adopted, such as bituminous bond strength test, softening point test, and cone penetration test. To evaluate moisture susceptibility, the BBS test was conducted under moist condition. The bond strength ratio (BSR) was calculated based on tensile strength ratio method. RESULTS : The sealant's properties significantly varied according to the amount of latex or carbon fiber. The usage of latex marginally enhanced the cone penetration test result, notwithstanding reduced asphalt content. This implies that the sealant will be proper cold temperature reason. Moreover, the addition of latex and carbon fiber evidently increased the softening point. This indicates that the tendency of the material to flow at elevated temperatures is encountered during service. With the addition of latex and carbon fiber, the moisture susceptibility measured with BSR improved marginally, while the bond strength under dry condition decreased marginally. Sealant F displays the highest bond strength and BSR under limited test conditions. CONCLUSIONS : According to the proportion of latex and carbon fiber mixed, properties of sealant, such as softening point, cone penetration, and BSR varied marginally. This indicates that the sealant has to be applied considering the environmental condition, to improve service life.

면외 변형률 분포의 비선형성을 고려한 RC 기둥의 2차원 해석에 관한 연구 (2-dimensional analytical method of RC column considering nonlinearity of strain distribution in out-of-plane direction)

  • 김익현;이종석;정혁창
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.621-624
    • /
    • 2003
  • The columns with large widths in out-of-plane direction fail showing the high nonlinearity of strain distribution. In order to predict the nonlinear behavior with reasonable accuracy in 2 dimensional analysis the material models taking this characteristic into account are indispensible. In this study equivalent softening model is developed which releases the same amount of energy at failure as that of 3-D analysis. Its validity is confirmed by comparing the analysis result with that of 3-D.

  • PDF

나노결정금속의 경도의 결정립도의존성에 관한 연구 (A Study on the Grain Size Dependence of Hardness in Nanocrystalline Metals)

  • 김형섭;조성식;원창환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.73-76
    • /
    • 1997
  • Nanocrystalline materials have been modeled as a mixture of the crystallite and the grain boundary phases. The mechanical property has been calculated using the rule of mixtures based on the volume fractions. The critical grain size concept suggested by Nieh and Wadsworth and porous material model suggested by Lee and Kim were applied to the calculation. The theoretical results fit very well with the experimental values

  • PDF

K &C 모델을 이용한 콘크리트 비선형 해석 (Nonlinear Analysis of Concrete Using K & C Model)

  • 김영진;김장호;조병완
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.409-414
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF