• 제목/요약/키워드: material non-linearity

검색결과 173건 처리시간 0.026초

고온용 마이크로 세라믹 박막형 압력센서의 제작과 그 특성 (Fabrication of Micro Ceramic Thin-Film Type Pressure Sensors for High-Temperature Applications and Its Characteristics)

  • 김재민;이종춘;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.888-891
    • /
    • 2003
  • This paper describes on the fabrication and characteristics of micro ceramic thin-film type pressure sensors based on Ta-N strain-gauges for high-temperature applications. The Ta-N thin-film strain-gauges are deposited onto thermally oxidized Si diaphragms by RF sputtering in an argon-nitrogen atmosphere($N_2$ gas ratio: 8 %, annealing condition: $900^{\circ}C$, 1 hr.), Patterned on a wheatstone bridge configuration, and use as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is $1.097{\sim}1.21mV/V.kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS. The fabricated pressure sensor presents a lower TCR, non-linearity than existing Si piezoresistive pressure sensors. The fabricated micro ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that is operable under high-temperature environments.

  • PDF

성층권 비행선 기낭 막재료에 대한 비선형 거동 연구 (Non-Linear Behavior Analysis for Stratospheric Airship Envelope)

  • 서영욱;우경식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load­bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis with much higher non-linear elastic moduli. The difference was more distinguishable when the tow waviness was smaller.

  • PDF

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdeldjebbar;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.779-789
    • /
    • 2022
  • This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.

Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • 제44권3호
    • /
    • pp.339-361
    • /
    • 2012
  • Large amplitude free vibration and thermal post-buckling of shear flexible Functionally Graded Material (FGM) beams is studied using finite element formulation based on first order Timoshenko beam theory. Classical boundary conditions are considered. The ends are assumed to be axially immovable. The von-Karman type strain-displacement relations are used to account for geometric non-linearity. For all the boundary conditions considered, hardening type of non-linearity is observed. For large amplitude vibration of FGM beams, a comprehensive study has been carried out with various lengths to height ratios, maximum lateral amplitude to radius of gyration ratios, volume fraction exponents and boundary conditions. It is observed that, for FGM beams, the non-linear frequencies are dependent on the sign of the vibration amplitudes. For thermal post-buckling of FGM beams, the effect of shear flexibility on the structural response is discussed in detail for different volume fraction exponents, length to height ratios and boundary conditions. The effect of shear flexibility is observed to be predominant for clamped beam as compared to simply supported beam.

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Mourad, Khebizi;mohamed, Guenfoud
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.547-562
    • /
    • 2015
  • A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

정적 외연적 유한요소법을 이용한 비드공정해석 (The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method)

  • 정동원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

과부하 방지용 마이크로머시닝 금속 박막형 압력센서의 제작과 그 특성 (Fabrication of a Micromachined Metal Thin-film Type Pressure Sensor for High Overpressure Tolerance and Its Characteristics)

  • 김재민;임병권;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.192-196
    • /
    • 2002
  • This paper describes on the fabrication and characteristics of a metal thin-film pressure sensor based on Cr strain-gauges for harsh environment applications. The Cr thin-film strain-gauges are sputter-deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single-crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Cr thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.097~1.21 $mV/V{\cdot}kgf/cm^2$ in the temperature range of $25{\sim}200^{\circ}C$ and the maximum non-linearity is 0.43 %FS.

  • PDF

Exact buckling load of a restrained RC column

  • Krauberger, Nana;Saje, Miran;Planinc, Igor;Bratina, Sebastjan
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.293-310
    • /
    • 2007
  • Theoretical foundation for the buckling load determination in reinforced concrete columns is described and analytical solutions for buckling loads of the Euler-type straight reinforced concrete columns given. The buckling analysis of the limited set of restrained reinforced concrete columns is also included, and some conclusions regarding effects of material non-linearity and restrain stiffnesses on the buckling loads and the buckling lengths are presented. It is shown that the material non-linearity has a substantial effect on the buckling load of the restrained reinforced concrete columns. By contrast, the steel/concrete area ratio and the layout of reinforcing bars are less important. The influence on the effective buckling length is small.

Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material

  • Kocaturk, T.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.677-697
    • /
    • 2010
  • This paper focuses on geometrically non-linear static analysis of a simply supported beam made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is known, the line of action of follower forces is affected by the deformation of the elastic system on which they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic and hyperelastic. Two types of simply supported beams are considered which have the following boundary conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2) Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations, which can be achieved through the linearization of the principle of virtual work in its continuum form. In the study, the effect of the large deflections and rotations on the displacements and the normal stress and the shear stress distributions through the thickness of the beam is investigated in detail. It is known that in the failure analysis, the most important quantities are the principal normal stresses and the maximum shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet program. Numerical results show that geometrical nonlinearity plays very important role in the static responses of the beam.

이방성과 비선형성을 고려한 삼상 변압기의 TLM-FEM해석 (Analysis of the Three-Phase Transformer Considering the Non-Linear and Anisotropic Properties using the Transmission Line Modeling Method and FEM)

  • 임창환;김홍규;이창환;정현교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권10호
    • /
    • pp.523-529
    • /
    • 1999
  • In the case of the large power transformer, the grain-oriented material is usually used. So, to obtain more accurate results, anisotropy and non-linearity of the material must be considered. The Newton-Raphson(NR) method is generally used for analyzing these non-linear properties, but it consumes so much time, especially when the number of nodes is large or the shape of the model is complex. The transmission line modeling (TLM) method is successfully adopted to the analysis of non-linear properties with FEM, but it has not been adopted to the analysis of the anisotropic material. In this paper, the formulation of the TLM method considering anisotropy is developed and the adoption to the 3-phase transformer is presented.

  • PDF