DOI QR코드

DOI QR Code

Numerical modelling of the damaging behaviour of the reinforced concrete structures by multi-layers beams elements

  • Received : 2014.02.20
  • Accepted : 2015.01.27
  • Published : 2015.04.25

Abstract

A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, the behaviour of cracked concrete and the interaction effect between materials represented by the post-cracking filled. These parameters are taken into consideration in this paper to examine the response of the reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The numerical results obtained, are in a very good agreement with available experimental data and other numerical models of the literature.

Keywords

References

  1. Davenne, F., Ragueneau, F and Mazars, J. and Ibrahimbegovic, A. (2003), "Efficient approaches to finite element analysis in earthquake engineering", Comput. Struct., 81, 1223-1239. https://doi.org/10.1016/S0045-7949(03)00038-5
  2. Kotronis. P., Ragueneau, F and Mazars, J. (2005), "A simplified modelling strategy for R/C walls satisfying PS92 and EC8design", Eng. Struct., 27, 1197-1208. https://doi.org/10.1016/j.engstruct.2005.03.003
  3. Matallah, M. and Laborderie, C.(2009), "Inelasticity-damage-based model for numerical modeling of concrete cracking", Eng. Fract. Mech., 76, 1087-1108. https://doi.org/10.1016/j.engfracmech.2009.01.020
  4. Matallah, M. and Laborderie, C.(2007), "Modelisation numerique de l'ouverture des fissures dans les structures en beton", 25e rencontres de l'AUGC, Bordeaux, France, Mai.
  5. Mazars, J., Ragueneau, F. and Kotronis, P. (2001), " La simulation numerique, la simulation physique, 2 approches complementaires pour l'analyse des effets des risques naturels : le cas des seismes", XVeme congres francais de mecanique, Nancy, France,Septembre.
  6. Franz-Josef, ULM. (1994), "Modelisation elastoplastique avec endommagement du beton de structures. Application aux calculs statiques et dynamiques de structures en beton arme et beton precontraint", These de doctorat, Ecole Nationale des ponts et Chaussees, Paris.
  7. Kotronis, P. (2000), " cisaillement dynamique de murs en beton arme. Modeles simplifies 2D et 3D", These de Doctorat, Ecole normale superieure de Cachan, Cachan.
  8. Laborderie, C. (2003), " Strategies et Modeles de Calculs pour les Structures en Beton", These d'habilitation a diriger les recherches, Universite de Pau et des Pays de l'Adour.
  9. Ragueneau, F. (1999), "Fonctionnement dynamique des structures en beton - Influence des comportements hysteretiques locaux", These de doctorat, Ecole normale superieure de Cachan, Cachan.
  10. Ragueneau, F. (2006), "Comportements endommageants des materiaux et des structures en beton arme", Memoire d'habilitation a diriger des recherches, Universite Pierre et Marie Curie , Paris 6.
  11. Foure, B. et Virlogeux, M. (1978), " le flambement des poteaux compte tenu du fluage du beton", Annls. De l'I.T.B.T.P., $n^{\circ}$ 359, Mars.
  12. Stephane, M. (2012), "Reponse statique d'une poutre en beton arme (section rectangulaire) a comportement non lineaire", Manuel de validation, Code_Aster, fascicule V6. Aout
  13. Stephane, M. (2012), "Reponse sismique d'une poutre en beton arme (section rectangulaire) a comportement non lineaire", Manuel de validation, Code_Aster, fascicule V5.02, Aout
  14. Ghavamian, S. (2001), "MECA project benchmark: Three dimensional non linear constitutive models of fractured concrete. Evaluation-Comparison-Adaptation", Edited by EDF R&D.

Cited by

  1. Contribution to the damage modelling of reinforced concrete structures vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201714901052
  2. Contribution to the damage modelling of reinforced concrete structures vol.149, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201814901052
  3. Three-dimensional modelling of functionally graded beams using Saint-Venant's beam theory vol.72, pp.2, 2015, https://doi.org/10.12989/sem.2019.72.2.257