• 제목/요약/키워드: material homogeneity

Search Result 160, Processing Time 0.026 seconds

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation (사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화)

  • Lee, Jimin;Kim, Jongryoul;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Material Characteristics and Archaeological Scientific Implication of the Bronze Age Potteries from the Cheonan-Asan Area, Korea (천안-아산 지역 청동기시대 무문토기의 재료학적 특성과 고고과학적 의미)

  • Lee, Chan Hee;Cho, Seon Yeong;Eo, Eon Il;Kim, Ran Hee
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • The excavated potteries and raw clays of the Bronze Age from the archaeological sites in the Cheonan-Asan area were studied on material scientific characteristics and homogeneity. Under the microscope, grainsize of the tempers in the potteries were distributed from less than 1mm to 10mm. Microtexture of the potteries showed various shapes and sizes of pores. In addition to the main minerals such as quartz, feldspar, mica, hornblende, chlorite and talc were found from the X-ray diffraction analysis of potteries, while talc was not found in the raw clay. Therefore, it was considered as an artificially added mineral. Firing temperature of the potteries, which did not contain chlorite, are assumed that they were baked below $850^{\circ}C$. On the other hand, the potteries which had mica and talc, are assumed that they were fired below $900^{\circ}C$. The geochemical characteristics of the potteries and raw clays showed very similar patterns, that means the potteries were produced by using the raw clay sources from each site.

Interpretation of Firing Temperature and Material Similarity for Potteries from Ancient Tombs in Songpa Area, Seoul (서울 송파 지역 고분 출토 토기의 재료학적 동질성 및 소성온도 해석)

  • Lee, Gyu Hye;Yun, Jung Hyun;Lee, Chan Hee
    • Conservation Science in Museum
    • /
    • v.28
    • /
    • pp.17-34
    • /
    • 2022
  • This study seeks to identify the material characteristics of earthenware excavated from the Bangi-dong Ancient Tomb No. 3 and the articulated stone-mound tomb of the Seokchon-dong ancient tombs in the Songpa region, and analyze the homogeneity and the firing temperature of the materials used at each excavated site. The remains have been studied relatively recently, and the groups of tombs in which they were found demonstrate the transition of ancient Korean burial systems, and at the same time, provide important archaeological data about those in power at the time. The earthenware pottery excavated from the two sites examined in the study were buried at different times, and it is assumed that they were made by procuring weathered soil of similar gneiss, judging from the behavior of the compatible and incompatible elements and the weathering tendency found by examining the main components. In addition, the examination of the mineral composition and microstructure of clay indicates that the earthenware from Seokchon-dong was fired at 950 degrees Celsius or lower at a relatively early stage. On the other hand, the earthenware from Bangi-dong Tomb No. 3 was confirmed to have experienced temperatures below 850 degrees Celsius and above 1,000 degrees Celsius. However, it is difficult to interpret the difference as the result of the changes in firing temperature throughout the eras. It is expected that it will be possible to interpret the changes in earthenware manufacturing techniques by comparing more diverse earthenware potteries and ancient soils.

The Effect of the Structured Education on the Early Rehabilitation Knowledge and Activity Performance of the C.V.A. Patients (구조화된 환자교육이 뇌졸중 환자의 조기재활에 관한 지식과 활동수행에 미치는 영향)

  • 이혜진;이향련
    • Journal of Korean Academy of Nursing
    • /
    • v.27 no.1
    • /
    • pp.109-119
    • /
    • 1997
  • This study has been attempted to set up the strategies of the nursing which can promote the activity performance for early rehabilitation for the patients by examining the effect of the structured patient education on the early rehabilitation knowledge and activity performance of the C.V.A patients. The study method has been done by investigating the experiment group and control group in advance through the question papers and interview and observation on 65 patients who had been hospitalized at oriental medicine hospital of K Medical Center from July 1st 1995 to the end of Sep, 1995. The analysis of the collected material had been done for the homogeneity test in which general characters of experiment group and control group had been tested by X²and the homogeneity test of ADL by t-test. To test the hypothesis the t-test had been given for the difference of the early rehabilitation knowledge and activity performance between the two groups and the correlation between early rehabilitation knowledge and activity performance had been tested by Pearson's Correlation Coefficient. The result of the test of the hypothesis is as the below. 1 The 1st hypothesis “The experiment group which had received the structured education should be higher in the early rehabilitation knowledge than the control group” was supported(t=4.45. p=.000). 2. The 2nd hypothesis “The experiment group which received the structured education should be higher in the early rehabilitation activity performance than the control group”was supported(t=2.11, p=.036). 3. The 3rd hypothesis “The higher the early rehabilitation knowledge of the patient the higher the activity performance degree” was rejected (r=.1546, p=.219). In conclusion, the patients who received the structured education showed the increase in the degree of early rehabilitation knowledge and activity performance, so it has been judged that education has been prerequisite in increasing the knowledge and activity performance of early rehabilitation.

  • PDF

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Optimal Design of an MRI Device Considering the Homogeneity of the Magnetic Field (자기장의 균일성을 고려한 자기공명장치의 최적설계)

  • Lee, Jung-Hoon;Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.654-659
    • /
    • 2008
  • This paper is to suggest a concept design of the permanent magnet type magnetic resonance imaging (MRI) device based on the parameter optimization method. Pulse currents in the gradient coils will introduce the effect of eddy currents in the ferromagnetic material, which will worsen the quality of imaging. In order to equalize the magnetic flux in the MRI device for good imaging, the eddy current effect in the ferromagnetic material must be taken into account. This study attempts to use the design of experiment (DOE) and the response surface method (RSM) for equalizing the magnetic flux of the permanent magnet type MRI device using that the magnetic flux can be calculated directly using a commercial finite element analysis package. As a result, optimal shapes of the pole and the yoke of the PM type MRI device can be obtained. The commercial package, ANSYS, is used for analyzing the magnetic field problem and obtaining the resultant magnetic flux.

Oxidative Line Width Reduction of Imprinted Nanopatterns

  • Park, Dae Keun;Kang, Aeyeon;Jeong, Mira;Lee, Jaejong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.650-650
    • /
    • 2013
  • Although imprinted nanopatterns of organic polymer can be modified by the heat treatment [1], it generally requires high process temperatures and is material-dependent since the heat-induced mass loss of the organic polymer is greatly affected by its chemical characteristics. When oxygen is added during the annealing process, one can reduce the process temperature as well as the dependence of the materials. With the oxygen, line width reduction of a polymer (SU-8) patterns could be accomplished at temperature of as low as $250^{\circ}C$ which was not possible in the heat only process. This oxidative line width reduction can be dramatically promoted with the introduction of oxygen plasma. The oxygen plasma, with its highly-reactive oxygen species, vigorously etches away the organic materials, proven to be extremely effective line with reduction method. It is, however, very hard to control the extent and homogeneity of the etching, particularly of very fine patterns. Here, we report an effective and reliable line width reduction method of imprinted nanopatterns by combined plasma and heat treatment. The merits of this process include the reduction of process temperature, time and material-dependence.

  • PDF

A Study on The Expressive Characteristics of Transparent Materials in Interior Design (실내디자인에 있어 투명성 재료의 표현 특성에 관한 연구)

  • Lee, Gyoo-Baek
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.4
    • /
    • pp.43-50
    • /
    • 2009
  • Design trend, transparency, which has been developed under a reflection of current periodic environment, has been exposed to people all over the world through varieties of architecture facade and interior space. As interior space follows this trend, which has difference in showing space from the past, transparency becomes an important measure of showing openness of certain space. Main objective of this research is to understand a characteristics of materials that leads transparency a important measure to the modern interior design, and this will set the range to this applicable materials for appropriate areas of defining transparency in an interior. Characteristic uses of transparent materials found in this research which leads transparency into interior space are described below: First, there are two perspectives in transparency. One is visibility and material wised transparency and the other is conditional and spacial wised transparency. With this knowledge, we can expand a level of transparency with ideas such as clarity, opacity, visible transmission, and reflection, and this broadened range will vary the acceptable materials used to show transparency. Second, transparent materials are used with many different purposes in modern interior space as furnitures, sanitary fixtures, partitions, and other structures. With using modern technology in reforming this materials brought new methods in structure composing. last, transparent materials' expnt pable characteristics made modern interior space to have a control over spacial homogeneity, a simplified octlines, weakened boundaries, and compositional effects by interference and vision.

The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets (Ni-Zn-Cu계 페라이트 시트에서 충진 밀도에 따른 시트 휨 현상)

  • Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Song, Woo Chang;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.781-786
    • /
    • 2015
  • It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.