• Title/Summary/Keyword: material degradation

Search Result 1,589, Processing Time 0.024 seconds

Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation (실리콘 태양전지 제조공정과 열화의 상관관계 분석)

  • Yewon Cha;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

Material Degradation of X20 Steel (12Cr-1MoVNi) for Boiler Tube of Power Plant (발전설비 보일러 튜브용 X20강의 가속열처리에 의한 재질 열화)

  • Choe, Byung-Hak;Yoon, Kee Bong;Lee, Nam-Hyuck;Kim, Sin;Lee, Gil-Jae;Kim, Kwang-Ho;Kwon, Dong Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.276-282
    • /
    • 2008
  • Material degradation of Cr steels in boiler tubes was accompanied by the microstructural changes including carbide behavior and crack formation. The microstructural change and the mechanical behavior of hardness and creep properties in accelerated heat-treatments were studied in order to identify the material degradation of the X20 Cr steel. The degradation behavior was occurred in the hardness increasing followed by decreasing due to carbide dissolution and precipitation.

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

Degradation and hole formation of the Te-based thin films (Te을 기본으로 한 박막에서의 열화와 미세구멍형성에 관한 연구)

  • Lee, Hyun-Young;Park, Tae-Sung;Um, Jeong-Ho;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.207-209
    • /
    • 1987
  • This paper reports the effect of additive elements such as Bi, Sb on degradation and hole formation of the Te-Se thin films. Changes in light transmission were used to monitor the degradation rate of thin Te films in an accelerated temperature-humidity environment. In thin accelerated temperature-humidity environment, $(Te_{86}Se_{14})_{70}Bi_{30}$ thin film was stable and $(Te_{86}Se_{14})_{50}Sb_{50}$ thin film was unstable in comparison with the other films that used in this experiment. The hole formation was carried out in the Te-based thin films.

  • PDF

Study on the Tracking Characteristics Depending on Accelerated Degradation of PVC Insulation Material (PVC 절연재료의 가속열화에 따른 트래킹 특성에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.91-98
    • /
    • 2017
  • The present paper is a study on the tracking characteristics depending on accelerated degradation of PVC insulation material. In order to insulation degradation of PVC insulation material, the Arrhenius equation, a type of accelerated degradation test formula, was used to conduct accelerated degradation experiments with experiment samples prepared at the following age equivalents: 0, 10, 20, 30 and 40 years. Afterwards, a tracking experiment was conducted on the accelerated experiment samples as part of the KS C IEC 60112 criteria. When measuring the PVC tracking features according to the accelerated aging, the results showed that when 0.1% of ammonium chloride was added to the PVC insulating material, but no tracking occurred. However, depending on the age equivalent, The results of analyzing the current waveform and voltage waveform of the tracking propagation process showed the age equivalent from 0 years to 40 years displayed a break down in insulation resistance and even the BDB(before dielectric breakdown) sections did not maintain the same functionality of the original material. Based on a criterion of an age equivalent of 0 years, material with an age equivalent of 10 years posed a 1.4 times greater risk, material with an age equivalent of 20 years posed a 2 times greater risk, material with an age equivalent of 30 years posed a 4.6 times greater risk, and material with an age equivalent of 40 years posed a 7 times greater risk.

DC Potential Drop Method for Evaluating Material Degradation

  • Seok, Chang-Sung;Bae, Bong-Kook;Koo, Jae-Mean
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1368-1374
    • /
    • 2004
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with in-service exposure time in high temperatures. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, nondestructive techniques are needed to evaluate the degradation. In this study, test materials with several different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. The DC potential drop method and destructive methods such as tensile and fracture toughness were used in order to evaluate the degradation of 1Cr-1Mo-0.25V steels. In this result, we can see that tensile strength and fracture toughness can be calculated from resistivity and it is possible to evaluate material degradation using DC potential drop method, non-destructive method.

Chaotic evaluation of material degradation time series signals of SA 508 Steel considering the hyperspace (초공간을 고려한 SA 508강의 재질열화 시계열 신호의 카오스성 평가)

  • 고준빈;윤인식;오상균;이영호
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.86-96
    • /
    • 1998
  • This study proposes the analysis method of time series ultrasonic signal using the chaotic feature extraction for degradation extent evaluation. Features extracted from time series data using the chaotic time series signal analyze quantitatively degradation extent. For this purpose, analysis objective in this study is fractal dimension, lyapunov exponent, strange attractor on hyperspace. The lyapunov exponent is a measure of the rate at which nearby trajectories in phase space diverge. Chaotic trajectories have at least one positive lyapunov exponent. The fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal correlation) dimensions, lyapunov exponents, energy variation showed values of 2.217∼2.411, 0.097∼ 0.146, 1.601∼1.476 voltage according to degardation extent. The proposed chaotic feature extraction in this study can enhances precision ate of degradation extent evaluation from degradation extent results of the degraded materials (SA508 CL.3)

  • PDF

A Study on the Degradation Characteristics of ZnO Ceramic Devices by the Valence Controls (원자가 제어에 의한 ZnO 세라믹 소자의 열화특성 연구)

  • 소순진;김영진;소병문;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.157-160
    • /
    • 2001
  • Three sets of ZnO ceramic devices (reference samples with Matsuoka\`s composition; added 7o MgO, A1$_2$O$_3$, SiO$_2$) have been prepared by the conventional mixed oxide route. These additives were determined by the factors of valences and ionic radiuses. DC accelerated degradation test was performed for analysis of degradation characteristics versus the various additives. The conditions of DC degradation test were 115${\pm}$2$^{\circ}C$ for 12h. Using XRD and SEM, the Phase and microstructure of samples were analyzed respectively. E-J analysis was used to determine ${\alpha}$. Frequency analysis was accomplished to understand the relationship between R$\sub$g/ and $R_{b}$ with the electric stress at the equivalent circuit.

  • PDF

Characteristics of Insulation Degradation in Epoxy Mold Type BCT (에폭시 몰드형 BCT의 절연열화 특성)

  • Song, Jae-Joo;Lee, Jung-Choi;Lim, Sung-Hun;Ko, Seok-Cheol;Han, Byung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.902-908
    • /
    • 2005
  • Various stresses (such as electrical stress, mechanical stress, environmental and electrochemical stress, and defects of structure) result in insulation degradation of epoxy mold type insulators. Since the insulation degradation of BCT(Bushing Current Transformer) and bushing proceeds during fabrication process or operation time due to these causes, various methods to reduce the degradation in their insulation ability have been suggested. In this paper, we investigated surface temperature increment of these insulators due to PD(partial discharge). After the voltage applied into the insulator to generate the artificial PD, the surface temperature of the insulator was measured with non-contact thermometer using infrared rays. It was confirmed through the analysis based on PD experiments that the procession in the insulation degradation of the insulator could be estimated through the measurement of the surface temperature in the insulator.

A technology State of Accelerating Degradation and Life Estimation on the Traction Motor for Railway Rolling Stock (철도차량 견인전동기의 가속열화수명평가 기술현황)

  • Wang, Jong-Bae;Kim, Ki-Jun;Choi, Young-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, the technology for accelerating degradation & life estimation on the traction motor was introduced with the stator form-winding sample coils of the 200 Class insulation system The accelerative degradation was performed in 10 cycles, which were composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of $20{\sim}160^{\circ}C$. Relationship between degradation conditions and diagnosis results were analyzed to find an dominative degradation factor at the end-life point

  • PDF