• Title/Summary/Keyword: material combination

Search Result 1,368, Processing Time 0.027 seconds

Focused Electron Beam-Controlled Graphene Field-Effect Transistor

  • Kim, Songkil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.360-366
    • /
    • 2020
  • Focused electron beams with high energy acceleration are versatile probes. Focused electron beams can be used for high-resolution imaging and multi-mode nanofabrication, in combination with, molecular precursor delivery, in an electron microscopy environment. A high degree of control with atomic-to-microscale resolution, a focused electron beam allows for precise engineering of a graphene-based field-effect transistor (FET). In this study, the effect of electron irradiation on a graphene FET was systematically investigated. A separate evaluation of the electron beam induced transport properties at the graphene channel and the graphene-metal contacts was conducted. This provided on-demand strategies for tuning transfer characteristics of graphene FETs by focused electron beam irradiation.

The Area Measurement of Composite Specimen using Digital Image Processing (디지털 영상처리를 이용한 복합재료 시편의 면적 측정)

  • Son, Byung Jik;Lee, Kyu Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, we study the calculation for the fracture area of the composite material specimens using digital image processing techniques. This study was able to calculate the area of the fracture region through the main operation step 7 on the basis of improved image. To extract the area in the original image, we have to use opening operation, close operation, the Hit-or-Miss operation and Bottom hat filter, Top hat filter, etc. In particular, to extract the area of the composite specimen discussed in this study, we have to use the combination of the operations and filters because it is non-isotropic material, or should develop a new algorithm based on it.

UV/IR flame detector using Microprocessor (마이크로프로세서를 사용한 UV/IR 불곶 감지기)

  • 박성진;임병현;임종연;김명원;윤길호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults. filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

Fabrication and Performances of Amperometric Gas Sensors (전류검출형 가스센서의 구성 및 성능평가에 관한 연구)

  • 김귀열;박용필;이준웅;서장수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1073-1075
    • /
    • 2001
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test.

  • PDF

Latest analysis methods for the next generation of nano devices using multi-disciplinary in situ Nano-Surface Analytical System (표면분석 장비를 활용한 차세대 나노소자 물성분석)

  • Lee, Jouhahn
    • Vacuum Magazine
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2014
  • The new materials such as graphene and other nano scale structured materials are attracting great attention due to its expandability for the future electronic devices. In this presentation, a variety of analysis techniques will be introduced for the latest new material applications such as graphene and organic materials with number of metals. The basic properties of next generation device should be carefully analyzed without being exposed to ambient surrounding since the physical and chemical properties of new material or interface states are easily and drastically changed by ambient condition. With the combination of the fabrication process and precise analysis instruments, it is expected to set the facilities supporting the nanotechnology industry and other research groups. This system will give strong support nanotechnology and other complex science with qualified data and information on basic knowledge on the new-forthcoming materials for the future.

Synthesis and Biaxial Nematic Properties of Novel Liquid Crystalline X-shaped Mesogens Containing Perfluoroalkyl Alkanes as a Side Chain

  • Lee, Byung-Hoon;Choi, E-Joon;Park, Sang-Byung;Zin, Wang-Choel;Lee, Gak-Seok;Yoon, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.324-326
    • /
    • 2008
  • Novel X-shaped molecules containing perfluoroalkyl alkanes as a side chain have been synthesized and characterized. The properties of mesophases were investigated by a combination of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), X-ray diffractometry (XRD) and electro-optical measurements.

  • PDF

Technology of Amperometric Gas Sensors (전류검출형 가스센서의 기술)

  • 김귀열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.222-225
    • /
    • 2002
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor.

  • PDF

Characteristic Prediction and Analysis of 3-D Embedded Passive Devices (3차원 매립형 수동소자의 특성 예측 및 분석에 대한 연구)

  • Shin, Dong-Wook;Oh, Chang-Hoon;Lee, Kyu-Bok;Kim, Jong-Kyu;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.607-610
    • /
    • 2003
  • The characteristic prediction and analysis of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. The four different structures of 3-D inductor are fabricated by using low-temperature cofired ceramic (LTCC) process. The circuit model parameters of the each building block are optimized and extracted using the partial element equivalent circuit method and HSPICE circuit simulator. Based on the model parameters, predictive modeling is applied for the structures composed of the combination of the modeled building blocks. And the characteristics of test structures, such as self-resonant frequency, inductance and Q-factor, are analyzed. This approach can provide the characteristic conception of 3-D solenoid embedded inductors for structural variations.

  • PDF

Design and FEM Analysis of Ultrasonic Linear Motor (초음파리니어 모터의 설계 및 해석)

  • Kim, Hang-Sik;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.728-731
    • /
    • 2003
  • This paper deals with a flat type ultrasonic motor, which uses a longitudinal-bending multi mode vibrator of rectangular form. A linear ultrasonic motor was designed by combination of the first longitudinal and eighth bending mode, and the motor consisted of a straight aluminum alloy bar bonded with piezoelectric ceramic elements as a driving element. The geometrical dimensions of the rectangular aluminum vibrator were determined by Euler-Bernoulli theory ANSYS was used to analyze the resonance frequency and the displacement of the stator vibrator. The resonance frequency of the motor provides the elliptical motion. and ANSYS was used to analyze elliptical motion and elliptical trajectory of stator vibrator when thickness of piezoelectric ceramics was varied respectively 0.763, 1.526, 2.289[mm] and width of stator vibrator was varied respectively 16, 12, 8, 4[mm]. When thickness of piezoelectric ceramics was decreased, the displacement of the stator vibrator was increased. And when width of stator vibrator was decreased, the displacement of the stator vibrator was increased.

  • PDF

Eutectic Nanocomposites for Thermophotovoltaic Application

  • Han, Young-Hwan;Lee, Jae-Hyung;Kakegawa, Kazuyuki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.249-252
    • /
    • 2010
  • The ground amorphous powder was consolidated into a dense sintered body with a typical ultrafine $Al_2O_3-GdAlO_3$ eutectic structure by spark plasma sintering (SPS). Sintered material with ultrafine and dense eutectic structure was obtained by an appropriate combination of rapid quenching and SPS at lower temperature and more quickly than by conventional sintering. The $Al_2O_3$-based rare earth eutectic ceramics for solar cell emitters are believed to have a higher efficiency and the $Al_2O_3$ based eutectic ceramics with ultrafine grains will be one of the promising materials showing excellent selective emitter characteristics.