• Title/Summary/Keyword: matching points

Search Result 705, Processing Time 0.034 seconds

Extraction of Corresponding Points of Stereo Images Based on Dynamic Programming (동적계획법 기반의 스테레오영상의 대응점 탐색)

  • Lee, Ki-Yong;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.397-404
    • /
    • 2011
  • This paper proposes an algorithm capable of extracting corresponding points between a pair of stereo images based on dynamic programming. The purpose of extracting the corresponding points is to provide the stereo disparity data to a road-slope estimation algorithm with high accuracy and in real-time. As the road-slope estimation algorithm does not require dense disparity data, the proposed stereo matching algorithm aims at extracting corresponding points accurately and quickly. In order to realize this contradictory goal, this paper exploits dynamic programming, and minimizes matching candidates using vertical components of color edges. Furthermore, the typical occlusion problem in stereo vision is solved. The proposed algorithm is proven to be effective through experiments with various images captured on the roads.

Matching Of Feature Points using Dynamic Programming (동적 프로그래밍을 이용한 특징점 정합)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper we propose an algorithm which matches the corresponding feature points between the reference image and the search image. We use Harris's corner detector to find the feature points in both image. For each feature point in the reference image, we can extract the candidate matching points as feature points in the starch image which the normalized correlation coefficient goes greater than a threshold. Finally we determine a corresponding feature points among candidate points by using dynamic programming. In experiments we show results that match feature points in synthetic image and real image.

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

High-Speed Image Matching Method Using Geometry - Phase Information (기하 위상 정보를 이용한 고속 영상 정합 기법)

  • Chong Min-Yeong;Oh Jae-Yong;Lee Chil-Woo;Bae Ki-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1195-1207
    • /
    • 2005
  • In this paper, we describe image matching techniques which is automatically retrieving the exact matching area using geometry-phase information. We proposed a Matching Method which is rapidly estimating the correspondent points between adjacent images that included big-rotation and top-bottom movement element. It is a method that reduce computation quantity to be required to find an exact correspondent position using geometry-phase information of extracted points in images and DT map which set the distance value among feature points and other points on the basis of each feature point of a image. The proposed method shows good performance especially in the part to search a exact correspondent position between adjacent images that included big-rotation and top-bottom movement element.

  • PDF

Setting of the Operating Conditions of Stereo CCTV Cameras by Weather Condition

  • Moon, Kwang;Pyeon, Mu Wook;Lee, Soo Bong;Lee, Do Rim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.591-597
    • /
    • 2014
  • A wide variety of image application methods, such as aerial image, terrestrial image, terrestrial laser, and stereo image point are currently under investigation to develop three-dimensional 3D geospatial information. In this study, matching points, which are needed to build a 3D model, were examined under diverse weather conditions by analyzing the stereo images recorded by closed circuit television (CCTV) cameras installed in the U-City. The tests on illuminance and precipitation conditions showed that the changes in the number of matching points were very sensitively correlated with the changes in the illuminance levels. Based on the performances of the CCTV cameras used in the test, this study was able to identify the optimal values of the shutter speed and iris. As a result, compared to an automatic control mode, improved matching points may be obtained for images filmed using the data obtained through this test in relation to different weather and illuminance conditions.

Multimodal Fingerprint Matching Based on Minutiae Points and Directional Features (특징점 및 방향 특징에 기반한 멀티모달 지문 매칭)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2529-2531
    • /
    • 2009
  • A simple multimodal fingerprint recognition method based on two types of feature vectors such as minutiae points and directional features is proposed, where Directional Filter Bank (DFB) is used to extract directional features. Experimental results show that the proposed method can effectively combine minutiae- and DFB-based methods and produce a better matching capability in the poor quality fingerprint image.

Matching Points Extraction Between Optical and TIR Images by Using SURF and Local Phase Correlation (SURF와 지역적 위상 상관도를 활용한 광학 및 열적외선 영상 간 정합쌍 추출)

  • Han, You Kyung;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Various satellite sensors having ranges of the visible, infrared, and thermal wavelengths have been launched due to the improvement of hardware technologies of satellite sensors development. According to the development of satellite sensors with various wavelength ranges, the fusion and integration of multisensor images are proceeded. Image matching process is an essential step for the application of multisensor images. Some algorithms, such as SIFT and SURF, have been proposed to co-register satellite images. However, when the existing algorithms are applied to extract matching points between optical and thermal images, high accuracy of co-registration might not be guaranteed because these images have difference spectral and spatial characteristics. In this paper, location of control points in a reference image is extracted by SURF, and then, location of their corresponding pairs is estimated from the correlation of the local similarity. In the case of local similarity, phase correlation method, which is based on fourier transformation, is applied. In the experiments by simulated, Landsat-8, and ASTER datasets, the proposed algorithm could extract reliable matching points compared to the existing SURF-based method.

Feature Matching Algorithm Robust To Viewpoint Change (시점 변화에 강인한 특징점 정합 기법)

  • Jung, Hyun-jo;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2363-2371
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm which is robust to the viewpoint change by using the FAST(Features from Accelerated Segment Test) feature detector and the SIFT(Scale Invariant Feature Transform) feature descriptor. The original FAST algorithm unnecessarily results in many feature points along the edges in the image. To solve this problem, we apply the principal curvatures for refining it. We use the SIFT descriptor to describe the extracted feature points and calculate the homography matrix through the RANSAC(RANdom SAmple Consensus) with the matching pairs obtained from the two different viewpoint images. To make feature matching robust to the viewpoint change, we classify the matching pairs by calculating the Euclidean distance between the transformed coordinates by the homography transformation with feature points in the reference image and the coordinates of the feature points in the different viewpoint image. Through the experimental results, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load.

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

A Study on the Extraction of the Minutiae and Singular Point for Fingerprint Matching

  • Na Ho-Jun;Kim Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.761-767
    • /
    • 2005
  • The personal identification procedure through the fingerprints is divided as the classification process by the type of the fingerprints and the matching process to confirm oneself. Many existing researches for the classification and the matching of the fingerprint depend on the number of the minutiae of the fingerprints and the flow patterns by their direction information. In this paper, we focus on extracting the singular points by using the flow patterns of the direction information from identification. The extracted singular points are utilized as a standard point for the matching process by connecting with the extracted information from the singular point embodied. The orthogonal coordinates which is generated by the axises of the standard point can increase the accuracy of the fingerprints matching because of minimizing the effects on the location changes of the fingerprint images.

  • PDF