• Title/Summary/Keyword: matching circuit

Search Result 469, Processing Time 0.026 seconds

AlGaN/GaN Based Ultra-wideband 15-W High-Power Amplifier with Improved Return Loss

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Shin, Dong-Hwan;Yom, In-Bok;Kim, Jae-Duk;Lee, Wang-Youg;Lee, Chang-Hoon
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.972-980
    • /
    • 2016
  • An ultra-wideband microwave monolithic integrated circuit high-power amplifier with excellent input and output return losses for phased array jammer applications was designed and fabricated using commercial $0.25-{\mu}m$ AlGaN/GaN technology. To improve the wideband performance, resistive matching and a shunt feedback circuit are employed. The input and output return losses were improved through a balanced design using Lange-couplers. This three-stage amplifier can achieve an average saturated output power of 15 W, and power added efficiency of 10% to 28%, in a continuous wave operation over a frequency range of 6 GHz to 18 GHz. The input and output return losses were demonstrated to be lower than -15 dB over a wide frequency range.

Design and Manufacture of Multi-layer VCO by LTCC (저온 동시소성 세라믹을 이용한 적층형 VCO의 설계 및 제작)

  • Park, Gwi-Nam;Lee, Heon-Yong;Kim, Ji-Gyun;Song, Jin-Hyung;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.291-294
    • /
    • 2003
  • The circuit substrate was made from the Low Temperature Cofired Ceramics(LTCC) that a $\varepsilon_\gamma$ was 7.8. Accumulated Varactor and the low noise transistor which were a Surface Mount Device-type element on LTCC substrate. Let passive element composed R, L, C with strip-line of three dimension in the multilayer substrate circuit inside, and one structure accumulate band-pass filter, resonator, a bias line, a matching circuit, and made it. Used Screen-Print process, and made Strip-line resonator. A design produced and multilayer-type VCO(Voltage Controlled Oscillator), and recognized a characteristic with the Spectrum Analyzer which was measurement equipment. Measured multilayer structure VCO is oscillation frequency 1292[MHz], oscillation output -28.38[dBm], hamonics characteristic -45[dBc] in control voltage 1.5[V], A phase noise is -68.22[dBc/Hz] in 100 KHz offset frequency. The oscillation frequency variable characteristic showed 30[MHz/V] characteristic, and consumption electric current is approximately 10[mA].

  • PDF

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.

A Study on the OunyukgiUihakbogam (五運六氣醫學寶鑑) (『오운육기의학보감(五運六氣醫學寶鑑)』에 관한 연구(硏究))

  • Yoon, Chang-Yeo
    • Journal of Korean Medical classics
    • /
    • v.34 no.3
    • /
    • pp.85-100
    • /
    • 2021
  • Objectives : The OunyukgiUihakbogam authored by Cho, Wonhee, despite its relevance to application of the five circuit theory today, has been under-researched. Methods : Contents on the unique treatment approach through the 'visiting circuit and visiting qi(客運客氣)' of the date of conception was studied. Results & Conclusions : The theory of calculating the date of conception with the date of birth applies the theory of the various combinations of the ten heavenly stems. The gestation period for those born on the day of the rabbit and chicken are either 246 or 306 days, while for those born on the day of the tiger and monkey, 256 days. For those born on the day of the cow or the lamb, 266; for those born on the day of the rat or horse, 276; for those born on the day of the snake or the pig, 286; for those born on the day of the dragon or the dog, 296 days. Once the date of conception is fixed, the visiting circuit and qi is estimated, and a matching formula is chosen and applied.

A temperature sensor with low standard deviation with generating reference voltage for use in IoT applications (IoT 어플리케이션에서 활용하는 참조 전압을 같이 생성할 수 있는 표준 편차가 낮은 온도 센서)

  • Juwon Oh;Younggun Pu;Yeonjae Jung;Kangyoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.2
    • /
    • pp.10-14
    • /
    • 2024
  • This paper presents a circuit design aimed at generating the required reference voltage and temperature sensor voltage in conjunction with an ADC, utilizing the current generated by temperature characteristics of BJT components for sensor data conversion. Additionally, two control methods are introduced to reduce the standard deviation of the circuit, resulting in over a ten-fold decrease in standard deviation. The proposed circuit occupies an area of 0.057mm2 and was implemented using 55nm RF process.

Wideband Power Divider Using a Coaxial Cable (동축선을 이용한 광대역 전력 분배기)

  • Park, Ung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.661-668
    • /
    • 2012
  • A coaxial-cable impedance transformer that can be used in high power and wideband frequency range is an arbitrary impedance transformation ratio by an additional coaxial cable. The coaxial-cable impedance transformer to be 50-${\Omega}$ to 25-${\Omega}$ impedance transformation ratio is easily operated an wideband power divider by connecting two 50-${\Omega}$ lines at 25-${\Omega}$ impedance point. This wideband power divider has a poor output matching characteristic and a poor isolation characteristic between two output ports. In this paper, it proposes a coaxial-cable power divider to be a good output matching and isolation characteristics as it uses the singly terminated filter design theory. The odd-mode operation characteristic of the suggested power divider to use singly terminated low pass filter coefficient due to matching order and ripple value is examined by ADS program. And, it fabricates and measures the operation characteristic of 2-way power divider with 2nd-order and 4th-order matching circuit.

Design of Matching Layers for high Efficiency-wide band Ultrasonic Transducers (고출력 광대역 초음파 탐촉자를 위한 정합층 설계)

  • Kim, Yeon-Bo;Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.82-89
    • /
    • 1996
  • Application fields of ultrasonic transducers can be divided into two categories, a high ultrasonic resolution required field and a high ultrasonic power required field. This paper is aimed to determine the optimal properties of the matching layers of the transducer for each of the applications. Further, it is aimed to optimize the properties of the matching layers that show satisfactory performances for both of the application fields. Through the direct time domain analysis of the transmission and reflection behavior of the ultrasonic wave, apart from the conventional equivalent circuit analysis, and Fourier transformation of its results, we found the optimum acoustic impedances of the matching layers. The newly determined layers provide much better transducer performance-57% at most-than those obtained with conventional design methods. Based on the results, we also found the optimal acoustic impedances of the layers good for both of the application fields. For te optimization, we developed a new transducer performance evaluation parameter that can be applied to any type of ultrasonic transducers.

  • PDF

Dual-Band Class F Power Amplifier using CRLH-TLs for Multi-Band Antenna System (다중밴드 안테나 시스템을 위한 CRLH 전송선로를 이용한 이중대역 Class F 전력증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, a highly efficiency power amplifier is presented for multi-band antenna system. The class F power amplifier operating in dual-band designed with one LDMOSFET. An operating frequency of power amplifier is 900 MHz and 2.14 GHz respectively Matching networks and harmonic control circuits of amplifier are designed by using the unit cell of composite right/left-handed(CRLH) transmission line(TL) realized with lumped elements. The CRLH TL can lead to metamaterial transmission line with the dual-band holing capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of all harmonic components for high efficiency is very difficult, we have controled only the second- and third-harmonics to obtain the high efficiency with the CRLH TL. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency.

A Charge Pump Circuit in a Phase Locked Loop for a CMOS X-Ray Detector (CMOS X-Ray 검출기를 위한 위상 고정 루프의 전하 펌프 회로)

  • Hwang, Jun-Sub;Lee, Yong-Man;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.359-369
    • /
    • 2020
  • In this paper, we proposed a charge pump (CP) circuit that has a wide operating range while reducing the current mismatch for the PLL that generates the main clock of the CMOS X-Ray detector. The operating range and current mismatch of the CP circuit are determined by the characteristics of the current source circuit for the CP circuit. The proposed CP circuit is implemented with a wide operating current mirror bias circuit to secure a wide operating range and a cascode structure with a large output resistance to reduce current mismatch. The proposed wide operating range cascode CP circuit was fabricated as a chip using a 350nm CMOS process, and current matching characteristics were measured using a source measurement unit. At this time, the power supply voltage was 3.3 V and the CP circuit current ICP = 100 ㎂. The operating range of the proposed CP circuit is △VO_Swing=2.7V, and the maximum current mismatch is 5.15 % and the maximum current deviation is 2.64 %. The proposed CP circuit has low current mismatch characteristics and can cope with a wide frequency range, so it can be applied to systems requiring various clock speed.

13.56 MHz Wireless Power Transfer System Using Loop Antennas with Tunable Impedance Matching Circuit (가변 임피던스 정합 회로를 갖는 루프 안테나를 이용한 13.56 MHz 무선 전력 전송 시스템)

  • Won, Do-Hyun;Kim, Hee-Seung;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we proposed a 13.56 MHz wireless power transfer system using loop antennas with tunable impedance matching circuits. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating antennas. The proposed system can compensate the effect of this impedance mismatch owing to tunable impedance matching circuits using varactor diodes. Therefore, transmission efficiency is enhanced, moreover, the center frequency of the system is not changed, regardless of separation distance between two antennas. In order to demonstrate the performance of the proposed system, a wireless power transfer system with tunable impedance matching circuits is designed and implemented, which has a pair of loop antennas with a dimension of $30\;cm{\times}30\;cm$ cm. The input return loss, coupling coefficient, efficiency, and input impedance variation with respect to a distance between loop antennas were measured. From measured results, the proposed system shows enhanced performances than the case of the general fixed $50\;{\Omega}$ impedance matching circuits. Therefore, we verified that the proposed wireless power transfer system using the proposed impedance matching scheme will be able to ensure robust operation even when the separation distance of antennas is varied.