• Title/Summary/Keyword: master controller

Search Result 185, Processing Time 0.029 seconds

Force feedback control using fuzzy logic controller (퍼지논리 제어기를 이용한 힘궤한 제어)

  • 신동목;서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.486-489
    • /
    • 1996
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system. In a bilateral control system, the motion of the master device is followed by the slave one, while the force applied to the slave is reflected on the master. In this paper, a fuzzy logic controllers applied to the system. Using the fuzzy logic controller, the knowledge of the system dynamics is not needed. Simulations and experimental results show the performance of the proposed controller.

  • PDF

A master-slave control for telerobot using a non-actuated master arm (비구동 매스터 암을 이용한 원격로봇의 매스터-슬래이브 제어)

  • 황석용;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1692-1695
    • /
    • 1997
  • In this paper, a new control scheme for master-slave control of telerobot is proposed. The porposed method can be classified into unilater master-slave control methods in the aspect of the data flow. But the master arm in the proposed control scheme can deliver operator the similar kinesthetic sense as other bilateral force reflecting master arms do. The principle concept is that the sensed operator's force/torque is used as the reference input for a damping controller type of telerobot controller which track the operators efforts. Master arm and master controller can be implemented in a simple form, and it needs not be driven by actuators, but force sensing capability.

  • PDF

Design and Implementation of a Duplex Digital Excitation Control System for Power Plants

  • Nam. Chae-Ho;Nam, Jung-Han;Choi, June-Hyug;Baeg, Seung-Yeob;Cho, Chang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.140.4-140
    • /
    • 2001
  • This paper presents the duplex controller operated as master slave for Self Excited Static Type excitation system and the results of operation for duplex digital excitation system. Software is made up duplex multi-tasking control algorithm which is based on VxWorks(real-time OS), preprocessing algorithm for input-output signal, BSP & Device Driver for interfacing hardware and software, and OIS(Operator Interface Station) program, HMI S/W. Master controller and slave controller intercommunicate dominant data to minimize bump when controller switchover from master to slave occurs. Communication between master controller and slave controller is duplicated and communication between OIS and controller is duplicated. Hardware is made up VMEBUS based controller which is designed with PPC & I/O board ...

  • PDF

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.

An intelligent master controller with mixed mode for teleoperation (혼합제어모드를 이용한 텔레오퍼레이션 작업용 지능형 매스터 컨트롤러)

  • 이영우;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.461-465
    • /
    • 1996
  • Position and rate control modes arc the two common modes for controlling remote manipulators with joysticks or hand controllers. Generally, position mode is easier for teleoperation than rate modes, when the manipulation work space is small or comparable to the human operator's control space. When the telemanipulator's work space is very large, human operator's control motion range must be large to allow telemanipulator's full range of motion resulting poor control resolution. One way to solve the poor resolution problem is to use indexing. However, rate mode can provide any higher degree of resolution without use of indexing. If two modes are mixed, master controller will be more convenient. The mixed mode algorithm, changes operating mode from position mode to rate mode or vise versa using fuzzy logic. The fuzzy logic algorithm, which has been designed to recognize the teleoperator's intended motion properly, provides an intelligence to a master controller.

  • PDF

Bilateral control of Master-Slave System with Ideal Response (이상적인 응답 특성을 갖는 Master-Slave System의 Bilateral Control)

  • Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2760-2762
    • /
    • 2000
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system. In a bilateral control system. the motion of the master device is followed by the save one. while the force applied to the slave is reflected on the master. In this paper, a proposed controller applied to the system. Adding a switching control term to control input. robustness is improved. Also the knowledge of the system dynamics is not needed. The computer simulation results show the performance of the proposed controller.

  • PDF

Bilateral Control of Master-Slave System using Fuzzy Sliding Mode Control (퍼지 슬라이딩 모드 제어를 이용한 Master-Slave System의 Bilateral Control)

  • Seo, Sam-Jun;Seo, Ho-Joon;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2380-2382
    • /
    • 2001
  • The objective of this paper is to design a force feedback controller for bilateral control of a master-slave manipulator system using fuzzy sliding mode control. In a bilateral control system the motion of the master device is followed by slave the one. While the force applied to the slave is reflected on the master. In this paper, a proposed controller applied to the system. Adding a switching control term to the input, robustness is improved. Also the knowledge of the system dynamics is not needed. The computer simulation results show the performance of the proposed fuzzy sliding mode controller.

  • PDF

Dynamic Modeling and Repulsive Force Control of Medical Hpatic Master (의료용 햅틱 마스터의 동적 모델링과 힘 반향 제어)

  • Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • In this research, a new type of haptic master device using electrorheological(ER) fluid for minimally invasive surgery(MIS) is devised and control performance of the proposed haptic master is evaluated. The proposed haptic master consists of ER bi-directional clutch/brake for 2 DOF rotational motion(X, Y) using gimbal structure and ER brake on the gripper for 1 DOF rotational motion (Z). Using Bingham characteristic of ER fluid and geometrical constraints, principal design variables of the haptic master are determined. Then, the generation of torque of the proposed master is experimentally evaluated as a function of applied field of voltage. A sliding mode controller which is robust to uncertainties is then designed and empirically realized. It has been demonstrated via experiment that the proposed haptic master associated with the controller can be effectively applied to MIS in real field conditions.

The Implementation of Multi-Port UTOPIA Level2 Controller for Interworking ATM Interface Module and MPLS Interface Module (MPLS모듈과 ATM모듈과의 Cell Mode 인터페이스를 위한 Multi-Port지원 UTOPIA-L2 Controller구현)

  • 김광옥;최병철;박완기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1164-1170
    • /
    • 2002
  • In the ACE2000 MPLS system, MPLS Interface Module(MIM) is composed of an ATM Interface Module and a HFMA performing a packet forwarding. In the MIM, the HFMA RSAR receive cells from the Physical layer and reassemble the cells. And the IP Lookup controller perform a packet forwarding after packet classification. Forwarded packet is segmented into cells in the HFMA TSAR and transfer to the ALMA for the transmission to an ATM cell switch. When the MIM make use of an ATM Interface Module, it directly connect the ALMA with a PHY layer using the UTOPIA Level2 interface. Then, an ALMA performs Master Mode. Also, the HFMA TSAR performs the Master Mode in the MIM. Therefore, the UTOPIA-L2 Controller of the Slave Mode require for interfacing between an ALMA and a HFHA TSAR. In this paper, we implement the architecture and cell control mechanism for the UTOPIA-L2 Controller supporting Multi-ports.

Development of a Master-Slave System for Active Endoscope Using a Multi-DOF Ultrasonic Motor

  • Takemura, Kenjiro;Harada, Dai;Maeno, Takashi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Endoscopes for industrial and medical fields are expected to have multi degree-of-freedom (DOF) motions. A multi-DOF ultrasonic motor we developed consists of a spherical rotor and a bar-shaped stator, and the rotor rotates around three perpendicular axes using three natural vibration modes of the stator. In this study, a multi-DOF unilateral master-slave system for active endoscope using the multi-DOF ultrasonic motor is developed. The configurations of master and slave arms for active endoscope are similar, so that an operator can easily handle the master-slave system. First, driving characteristics of the multi-DOF ultrasonic motor are measured in order to design the slave arm and its controller. Next, the master arm and the slave arm are designed. Then, the unilateral feedback controller for the master-slave system is developed. Finally, the motion control tests of rotor are conducted. As a result, the possibility of the endoscope is confirmed.