• Title/Summary/Keyword: massive multiple input multiple output

Search Result 60, Processing Time 0.022 seconds

Effects of Channel Aging in Massive MIMO Systems

  • Truong, Kien T.;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.338-351
    • /
    • 2013
  • Multiple-input multiple-output (MIMO) communication may provide high spectral efficiency through the deployment of a very large number of antenna elements at the base stations. The gains from massive MIMO communication come from the use of multi-user MIMO on the uplink and downlink, but with a large excess of antennas at the base station compared to the number of served users. Initial work on massive MIMO did not fully address several practical issues associated with its deployment. This paper considers the impact of channel aging on the performance of massive MIMO systems. The effects of channel variation are characterized as a function of different system parameters assuming a simple model for the channel time variations at the transmitter. Channel prediction is proposed to overcome channel aging effects. The analytical results on aging show how capacity is lost due to time variation in the channel. Numerical results in a multicell network show that massive MIMO works even with some channel variation and that channel prediction could partially overcome channel aging effects.

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.

Beamforming Based CSI Reference Signal Transmission for FDD Massive MIMO Systems (주파수 분할 방식의 거대 다중 안테나 시스템을 위한 빔형성 기반의 채널상태정보 기준신호 전송기술)

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.520-530
    • /
    • 2016
  • Since FDD massive MIMO (multiple-input multiple-output) system deploys hundreds of transmit antennas at base station (BS) compared to conventional MIMO system, the overhead of transmitting channel state information reference signal (CSI-RS) increases proportionally to the number of transmit-antennas. To overcome these disadvantages, we proposed beamforming based CSI-RS transmission technique for FDD massive MIMO system which transmit CSI-RS by limited amount of downlink resources.

Limited Feedback Precoding for Correlated Massive MIMO Systems (공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘)

  • Lim, Yeon-Geun;Chae, Chan-Byoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, we propose a compressive sensing-based channel quantization feedback mechanism that is appropriate for practical massvie multiple-input multiple-output (MIMO) systems. We assume that the base station (BS) has a compact uniform square array that has a highly correlated channel. To serve multiple users, the BS uses a zero-forcing precoder. Our proposed channel feedback algorithm can reduce the feedback overhead as well as a codebook search complexity. Numerical simulations confirm our analytical results.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

Optimal Numbers of Base Station Antennas and Users in Multiuser Massive MIMO Systems with Pilot Overhead (다중 사용자 Massive MIMO 시스템의 파일럿 오버헤드를 고려한 최적 기지국 안테나 수 및 사용자 수 분석)

  • Jung, Minchae;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1630-1638
    • /
    • 2016
  • In this paper, we consider multiuser massive multiple-input and multiple-output (MIMO) system where multiusers simultaneously utilize massive antennas of base station (BS). With a downlink frame structure considering pilot signals, we derive the ergodic cell capacity based on zero-forcing beamforming (ZFBF) technique. This paper proves that the ergodic cell capacity is concave function with respect to the numbers of BS antennas and users, and derives the optimum numbers of BS antennas and users maximizing ergodic cell capacity. From the simulation results, it is shown that the derived numbers of BS antennas and users has the optimum value for the maximum ergodic cell capacity, and the ergodic cell capacity with the derived optimum values increases with respect to the transmit SNR(Signal to Noise Ratio).

Evolution of MIMO Technology (MIMO 기술의 진화)

  • Shim, Byonghyo;Lee, Byungju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.712-723
    • /
    • 2013
  • Recent exploration of smart-phone user is fueling the deployment of long term evolution (LTE) service that offers higher data rates service over 3G HSPA networks. In particular, Korea, mobile powerhouse, recently launched the service of LTE-Advanced (LTE-A) which is the latest release in LTE standard. Multiple-input-multiple-output (MIMO) technology is the one of key enablers for LTE and LTE-A for achieving high data rate. MIMO technology has received much attention since it is possible to achieve channel capacity in proportion to the number of antennas without increasing frequency and power. In this paper, we overview of the theoretical background of MIMO technology regarding from single-user MIMO, multiuser MIMO, and massive MIMO and design considerations to implement the communication system.

Performance Analysis of MRT-Based Dual-Polarized Massive MIMO System with Space-Polarization Division Multiple Access

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4006-4020
    • /
    • 2018
  • In recent years, one of the most remarkable 5G technologies is massive multiple-input and multiple-output (MIMO) system which increases spectral efficiency by deploying a large number of transmit-antennas (eg. tens or hundreds transmit-antennas) at base station (BS). However, conventional massive MIMO system using single-polarized (SP) transmit-antennas increases the size of the transmit-array proportionally as the number of transmit-antennas increases. Hence, size reduction of large-scale transmit-array is one of the major concerns of massive MIMO system. To reduce the size of the transmit-array at BS, dual-polarized (DP) transmit-antenna can be the solution to halve the size of the transmit-array since one collocated DP transmit-antenna deploys vertical and horizontal transmit-antennas compared to SP transmit-antennas. Moreover, proposed DP massive MIMO system increases the spectral efficiency by not only in the space domain but also in the polarization domain whereas the conventional SP massive MIMO system increases the spectral efficiency by space domain only. In this paper, the comparative performance of DP and SP massive MIMO systems is analyzed by space division multiple access (SDMA) and space-polarization division multiple access (SPDMA) respectively. To analyze the performance of DP and SP massive MIMO systems, DP and SP spatial channel models (SCMs) are proposed which consider depolarized propagation channels between transmitter and receiver. The simulation results show that the performance of proposed 32 transmitter (Tx) DP massive MIMO system improves the spectral efficiency by about 91% for a large number of user equipments (UEs) compare to 32Tx SP massive MIMO system for identical size of the transmit-array.