• 제목/요약/키워드: mass spectrometry-based lipidomics

검색결과 6건 처리시간 0.016초

Possibilities of Liquid Chromatography Mass Spectrometry (LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat Products: A Mini Review

  • Harlina, Putri Widyanti;Maritha, Vevi;Musfiroh, Ida;Huda, Syamsul;Sukri, Nandi;Muchtaridi, Muchtaridi
    • 한국축산식품학회지
    • /
    • 제42권5호
    • /
    • pp.744-761
    • /
    • 2022
  • The liquid chromatography mass spectrometry (LC-MS)-based metabolomic and lipidomic methodology has great sensitivity and can describe the fingerprint of metabolites and lipids in pork and beef. This approach is commonly used to identify and characterize small molecules such as metabolites and lipids, in meat products with high accuracy. Since the metabolites and lipids can be used as markers for many properties of a food, they can provide further evidence of the foods authenticity claim. Chromatography coupled to mass spectrometry is used to separate lipids and metabolites from meat samples. The research data usually is compared to lipid and metabolite databases and evaluated using multivariate statistics. LC-MS instruments directly connected to the metabolite and lipid databases software can be used to assess the authenticity of meat products. LC-MS has good selectivity and sensitivity for metabolomic and lipidomic analysis. This review highlighted the combination of metabolomics and lipidomics can be used as a reference for analyzing authentication meat products.

Phospholipid Analysis by Nanoflow Liquid Chromatography-Tandem Mass Spectrometry

  • Moon, Myeong Hee
    • Mass Spectrometry Letters
    • /
    • 제5권1호
    • /
    • pp.1-11
    • /
    • 2014
  • Lipids play important roles in biological systems; they store energy, play a structural role in the cell membrane, and are involved in cell growth, signal transduction, and apoptosis. Phospholipids (PLs) in particular have received attention in the medical and lipidomics research fields because of their involvement in human diseases such as diabetes, obesity, atherosclerosis, and many cancers associated with lipid metabolic disorders. Here I review experimental strategies for PL analysis based on nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MSn). In particular, discussed are lipid extraction methods, nanoflow LC separation of PLs, effect of ionization modifiers on the ESI of PLs, influence of chain lengths and unsaturation degree of acyl chains of PLs on MS intensity, structural determination of the molecular structure of PLs and their oxidized products, and quantitative profiling of PLs from biological samples such as tissue, urine, and plasma in relation to cancer and coronary artery disease.

A Comprehensive Review of Lipidomics and Its Application to Assess Food Obtained from Farm Animals

  • Song, Yinghua;Cai, Changyun;Song, Yingzi;Sun, Xue;Liu, Baoxiu;Xue, Peng;Zhu, Mingxia;Chai, Wenqiong;Wang, Yonghui;Wang, Changfa;Li, Mengmeng
    • 한국축산식품학회지
    • /
    • 제42권1호
    • /
    • pp.1-17
    • /
    • 2022
  • Lipids are one of the major macronutrients essential for adequate growth and maintenance of human health. Their structure is not only complex but also diverse, which makes systematic and holistic analyses challenging; consequently, little is known regarding the relationship between phenotype and mechanism of action. In recent years, rapid advancements have been made in the fields of lipidomics and bioinformatics. In comparison with traditional approaches, mass spectrometry-based lipidomics can rapidly identify as well as quantify >1,000 lipid species at the same time, facilitating comprehensive, robust analyses of lipids in tissues, cells, and body fluids. Accordingly, lipidomics is now being widely applied in various fields, particularly food and nutrition science. In this review, we discuss lipid classification, extraction techniques, and detection and analysis using lipidomics. We also cover how lipidomics is being used to assess food obtained from livestock and poultry. The information included herein should serve as a reference to determine how to characterize lipids in animal food samples, enhancing our understanding of the application of lipidomics in the field in animal husbandry.

Lipid N-formylation Occurs During Fixation with Formalin

  • Kim, Min Jung;Lim, Heejin;Kim, Muwoong;Choi Yuri;Nguyen, Thy N.C.;Park, Seung Cheol;Kim, Kwang Pyo;Jung, Junyang;Kim, Min-Sik
    • Mass Spectrometry Letters
    • /
    • 제13권2호
    • /
    • pp.35-40
    • /
    • 2022
  • Human tissues and organs can be preserved intact by fixation with formalin for the future analysis of biomolecules of interest. With the advances in high-throughput methods, numerous protocols have been developed and optimized to attain the most pathophysiological information out of biomolecules, including RNA and proteins, in formalin-fixed samples. However, there is no systematic study to examine the effects of formalin fixation on the lipidome of biological samples in a global fashion. In this study, we conducted a mass spectrometry-based analysis to survey the alteration in the lipidome of mice brains by fixation methods. A total of 308 lipids were quantitatively measured using triple quadrupole mass spectrometry. We found that most were unchanged after formalin fixation except for a few lipid classes such as phosphatidylethanolamine.

식품분야에서 Iipidomics 분석 기술의 활용 (Application of Iipidomics in food science)

  • 김현진;장광주;이현정;김보민;오주홍
    • 식품과학과 산업
    • /
    • 제50권1호
    • /
    • pp.16-25
    • /
    • 2017
  • There is no doubt that accumulation of big data using multi-omics technologies will be useful to solve human's long-standing problems such as development of personalized diet and medicine, overcoming diseases, and longevity. However, in the food industry, big data based on omics is scarcely accumulated. In particular, comprehensive analysis of molecular lipid metabolites directly associated with food quality, such as taste, flavor, and texture has been very limited. Moreover, most of food lipidomics studies are applied to analyze lipid components and discriminate authenticity and freshness of limited foods including vegetable and fish oil. However, if lipid big data through food lipidomics research of various foods and materials can be accumulated, lipidomics can be used in the optimization of food processing, production, delivery system, food safety, and storage as well as functional food.

Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass Spectrometry

  • Ji, Dong Yoon;Lee, Chang-Wan;Park, Se Hee;Lee, Eun Jig;Lee, Do Yup
    • Mass Spectrometry Letters
    • /
    • 제8권4호
    • /
    • pp.109-113
    • /
    • 2017
  • Single analytical procedure including extraction, liquid chromatography, and mass spectrometric analysis was evaluated for the simultaneous measurement of lysophospholipids (LPLs). LPLs, particularly, lysophosphatidic acids (LPA) and sphingosine 1-phosphate (S1P) are lipid messengers ubiquitously found in various biological matrix. The molecular species mediate important physiological roles in association with many diseases (e.g. cancer, inflammation, and neurodegenerative disease), which emphasize the significance of the simple and reliable analytical method for biomarker discovery and molecular mechanistic understanding. Thus, we developed analytical method mainly focusing on, but not limited by those lipid species S1P and LPA using reverse phase liquid chromatography-tandem mass spectrometry (RPLC-ESI-MS-MS). Extraction method was modified based on Folch method with optimally minimal level of ionization additive (ammonium formate 10 mM and formic acid). Reverse-phase liquid-chromatography was applied for chromatographical separation in combination with negative ionization mode electrospray-coupled Orbitrap mass spectrometry. The method validation was performed on human blood plasma in a non-targeted lipid profiling manner with full-scan MS mode and data-dependent MS/MS. The proposed method presented good inter-assay precision for primary targets, S1P and LPA. Subsequent analysis of other types of LPLs identified a broad range of lysophosphatidylcholines (LPCs) and lysophosphatidyl-ethanolamines (LPEs).