• 제목/요약/키워드: mass sensor

검색결과 495건 처리시간 0.033초

하이브리드형 질량 유량 제어기의 설계 및 실현 (Design and Implementation of a Hybrid-Type Mass Flow Controller)

  • 이명의;정원철
    • 한국산학기술학회논문지
    • /
    • 제4권2호
    • /
    • pp.63-70
    • /
    • 2003
  • 본 논문에서는 반도체 제조장비의 핵심 부품 중에 하나인 질량유량제어기(MFC, Mass Flow Controller)클 설계하고 구현하였다 Microchip社의 마이크로콘트롤러(Microcontroller) PIC 16F876을 사용하여 개발된 MFC는 여러가지 문제점을 가진 아날로그(Analog) 방식의 MFC와 고가의 DSP(Digital Signal Processor) 및 고분해능의 AD변환기(Analog to Digital Convertor)를 사용하는 디지털 MFC의 장점을 혼합한 하이브리드형(Hybrid-Type)이다. 본 논문에서 개발된 MFC는 크게 센서부(Sensor Unit), 제어부(Control Unit), 구동기부(Actuator Unit)로 구성되었으며, 성능향상을 위한 자동보정(Automatic Calibration) 알고리즘과 표준테이블(Reference Table) 방식을 사용하였다.

  • PDF

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

압저항 센서에서 보스와 매스가 센서 민감도에 미치는 영향 (The effect of the boss and mass on the sensitivity of the piezoresistive sensor)

  • 심재준;이성욱;한동섭;김태형;한근조
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.405-410
    • /
    • 2005
  • 현재 압력이나 가속도를 측정하기 위해 사용되는 반도체 센서 중에서 압저항 센서가 가장 광범위하게 적용되고 있다. 이러한 압저항 센서는 반도체 공정에 의해서 제작되고, 기존의 센서보다 높은 민감도를 가지므로 그 적용성이 매우 높다. 하지만, 압저항 센서를 형성하는 구조물의 형상과 관련된 연구가 국내에서 미비하므로 이에 대한 연구가 요구된다. 본 연구에서는 과도한 압력에 센서를 보호하기 위한 보스(Boss)와 민감도 향상을 위해 사용되는 매스(Seismic Mass)의 기하학적 변화가 민감도에 미치는 영향을 압저항 분포를 통하여 분석하고, 적절한 위치와 크기를 제시하고자 한다.

  • PDF

실시간 제어기를 이용한 마이크로 열식 질량공기 유량센서의 열특성 측정 (Measurements of Thermal Characteristics for a Micro-Fabricated Thermal Mass Air Flow Sensor With Real-Time Controller)

  • 박병규;이준식
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.573-579
    • /
    • 2009
  • A thermal mass air flow sensor, which consists of a micro-heater and thermal sensors on the silicon-nitride thin membrane structure, is micro-fabricated by MEMS processes. Three thermo-resistive sensors, one for the measurement of microheater temperature, the others for the measurement of membrane temperature upstream and downstream of the micro-heater respectively, are used. The micro-heater is operated under the constant temperature difference mode via a real time controller, based on inlet air temperature. Two design models for microfabricated flow sensor are compared with experimental results and confirmed their applicabilities and limitations. The thermal characteristics are measured to find the best flow indicator. It is found that two normalized temperature indicators can be adopted with some advantages in practice. The flow sensor with this control mode can be adopted for wide capability of high speed and sensitivity in the very low and medium velocity ranges.

Redesigning Taguchi Sensor

  • Hossein-Babaei Faramarz;Park, Won-Kyu
    • 한국세라믹학회지
    • /
    • 제42권1호
    • /
    • pp.11-15
    • /
    • 2005
  • The configuration of the main components and the physical structure of the Taguchi sensor, the first ceramic gas sensor mass produced, has remained virtually unaltered since its appearance 40 years ago. This device owns an excellent combination of the quality factors but is non-selective. The research efforts carried out to enhance the selectivity in this resistive gas sensor are briefly reviewed. A novel design, Capillary-attached Gas Sensor (CGS), is introduced, which employs the same ceramic components used for the fabrication of a classical Taguchi sensor but in altered geometries. CGS presents remarkable advantages from the view point of selectivity over the original design. While the steady state response of a CGS has the same significance as that of the Taguchi sensor, its transient response presents valuable diagnostic information. Fabrication and test of a prototype CGS is reported.

Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring

  • Li, Jingcheng;Jang, Shinae;Tang, Jiong
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.661-668
    • /
    • 2012
  • Wireless sensor network is one of prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree-of-freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from $2.06m/s^2$ base excitation compared to stand-alone piezoelectric energy harvester without tip mass.

PID 제어기에 의한 소형 로봇용 그리퍼의 힘 제어 (PID Force Control of a miniature robot Gripper)

  • 홍동표
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.44-49
    • /
    • 1999
  • This paper is concerned with the theoretical and experimental study on the force conrtrol of a miniature robotic gripper. The gripper is an uniform flexible cantilever equipped with a distributed set of compact force sensor. As an actuator piezoelectric acturator, piezoelectric acturator is fixed with cupper plate at which the beam is clamped. The mathematical model of the assembled electro-mechaincal system is developed. The force sensor is described by a set of concentrated mass-spring system. The formulated equations of motion are applied to he study of a control problem where the gripper is commanded to grip an object The usefulness of the PID control technique is verified by experiment.

  • PDF

정저항형 유속/유량 센서의 구조 및 회로 개선 연구 (Development of Sensor Structure and Operating Circuit for Constant Resistive Type Flow Velocity/Mass Sensor)

  • 강윤석;박세광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1339-1341
    • /
    • 1994
  • In this paper, the flow velocity/mass sensor which is based on the principle of CCT(Constant Chip Temperature) and its digital operating circuit and system have been developed and tested. The experimental result for flow velocity shows that the sensitivity is $644.01{\mu}W^2/[m/sec]$ for air, and there is nearly no hysteresis for full measured range of velocity. Response tine is between 1 second and 8 seconds for low and large velocity variation, respectively.

  • PDF

Development of magnetic field measurement system for AMS cyclotron

  • Ho Namgoong;Hyojeong Choi;Mitra Ghergherehchi;Donghyup Ha;Mustafa Mumyapan;Jong-Seo Chai;Jongchul Lee;Hoseung Song
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3114-3120
    • /
    • 2023
  • A high-accuracy magnetic field measurement device based on a cyclotron is being developed for accelerator mass spectrometry (AMS). In this study, a magnetic field measurement device consisting of a Hall probe sensor, piezo-motor, and step motor was developed to measure the magnetic field of the AMS cyclotron magnet. The Hall probe sensor was calibrated to achieve positional accuracy by using polar coordinates. The measurement results between the ratchet gear and piezo-motor, which are the instruments used for driving the measurement device, were analyzed. The measurement result of the device with a piezo-motor exhibits a difference of 5 Gauss (0.04%) as compared with the simulation result.

Detection of the mechanical resonance of a micromechanical cantilever using dynamic flexural measurement technique and its mass sensing application

  • 김학성;윤호열;정운석;유나리;박정호;이상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.447-447
    • /
    • 2011
  • We studied to detect the mass variation using micro mechanical resonator. For measuring the resonance frequency of the micro mechanical system, optical method using laser interference is selected. A simple resonator is prepared by attaching an AFM cantilever on the piezo stack. The piezo stack makes a the cantilever vibrated with its resonance frequency. To change the mass of the resonator, gold was evaporated on the cantilever. We measured how much resonance frequency was changed according to the amount of gold attached on cantilever. This resonator is able to perform the role of a mass sensor and has a resolution of the order of micrograms. The fabrication of the resonator and measurement setup for detecting the mechanical resonance will be introduced in this presentation.

  • PDF