• Title/Summary/Keyword: mass magnetization

Search Result 16, Processing Time 0.035 seconds

A Study on Characteristic of Spindle Motor by Unsymmetric Magnetization Distribution in Permanent Magnet (비대칭 착자에 따른 스핀들 모터 특성에 관한 연구)

  • Park, Jae-Young;Bae, Jae-Nam;Kim, Ki-Chan;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.38-40
    • /
    • 2008
  • Distribution of Permanent magnet used in the spindle motor on the ODD is arranged by magnetizer. In general, permanent magnet is putted between yoke and back yoke of magnetizer so that symmetric magnetization distribution. But the magnet has unsymmetric magnetization distribution because of eccentricity of the yoke in mass production. So, in this paper we discuss the effect of asymmetric magnetization distribution on back EMF and cogging torque of the spindle motor.

  • PDF

Magnetism in Ni-W textured substrates for coated conductors

  • Song K. J.;Park Y. M.;Yang J. S.;Kim S. W.;Ko R. K.;Kim H. S.;Ha H. S;Oh S. S.;Park C.;Joo J. H.;Kim C. J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.7-10
    • /
    • 2005
  • The magnetic properties of a series of both annealed (biaxially textured) and as-rolled (non-textured) Ni-xW alloy tapes with compositions x = 0,1,3, and 5 at.$\%$, were studied. Characterization methods included XRD analyses to investigate the biaxial cube texturing of the annealed Ni-W alloy tapes and studies of the magnetization M for both annealed and as-rolled Ni-W alloy tapes. Both the isothermal mass magnetizations M(H) of a series of samples at different fixed temperatures and M(T) in fixed field, employing a PPMS-9 (Quantum Design), were measured. The Ni-W alloys have shown much reduced ferromagnetism as W-content x increases. Both the saturation magnetization Msat and Curie temperature Tc decrease linearly with W-content x, and both Msat and Tc go to zero at critical concentration of Xc - 9.50 at. $\%$ W.

Field-Induced Translation of Single Ferromagnetic and Ferrimagnetic Grain as Observed in the Chamber-type μG System

  • Kuwada, Kento;Uyeda, Chiaki;Hisayoshi, Keiji;Nagai, Hideaki;Mamiya, Mikito
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.308-310
    • /
    • 2013
  • Translation induced by the field-gradient force is being observed for a single ferromagnetic iron grain and a ferrimagnetic grain of a ferrite sample ($CuFe_2O_4$). From measurements on the translation, precise saturated magnetization of $M_S$ is possible for a single grain. The method is based on the energy conservation rule assumed for the grain during its translation and the grain is translated through a diffuse area under microgravity conditions. The results of the two materials indicate that a field-induced translation of grain bearing spontaneous moment is generally determined by a field-induced potential $-mM_SH(x)$ where m denotes the mass of sample. According to the above translations, the detection of $M_S$ is not interfered by any signals from the sample holder. The $M_S$ measurement does not require m value. By observing translations resulting from fieldinduced volume forces, the magnetization of a single grain is measurable irrespective of its size; the principle is also applicable to measuring susceptibility of diamagnetic and paramagnetic materials.

Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei;Jian, Wang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.244-248
    • /
    • 2016
  • Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than $100^{\circ}C$, the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.

Soft Magnetic Properties of Ring-Shaped Fe-Co-B-Si-Nb Bulk Metallic Glasses

  • Ishikawa, Takayuki;Tsubota, Takahiro;Bitoh, Teruo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.431-434
    • /
    • 2011
  • The reduction of the Nb content in the $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$ bulk metallic glass (BMG) has been studied. The glass-forming ability (GFA) is reduced by decreasing the Nb content, but it can be enhanced by replacing partially Fe by Co. Furthermore, the saturation magnetization of the $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG is 1.35 T, being with 13% larger than that of the base alloy $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$. $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG exhibits slightly larger $B_{800}$ (the magnetic flux density at 800 A/m) and smaller core losses (20%-30%) compared with the commercial Fe-6.5 mass% Si steel.

Magnetic Properties of Both Ni-W and (Ni-3%W)-Cu Textured Substrates for ReBCO Coated Conductor (고온초전도 박막선재용 Ni-$W_{xat.%}$ 및 (Ni-$W_{3at.%}$)-$CU_{xat.%}$ 이축배향 금속 기판들의 자기적 특성)

  • Song, K.J.;Kim, T.H.;Kim, H.S.;Ko, R.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.;Park, C.;Yoo, S.I.;Joo, J.H.;Kim, M.W.;Kim, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.28-29
    • /
    • 2006
  • The magnetic properties of a series of both annealed and as-rolled Ni-$W_y$ alloy tapes with compositions y = 0, 1, 3, and 5 at.%, were studied. To compare with Ni-W alloys, the magnetic properties of a series of both annealed and as-rolled $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5 and 7 at.%, were studied, as well. Both the isothermal mass magnetization M(H) of a series of samples, such as both Ni-W and [Ni-W]-Cu alloy tapes, at different fixed temperatures and M(T) in fixed field, were measured using a PPMS-9 (Quantum Design). The degree of ferromagnetism of Ni-$W_y$ alloys have reduced as W-content y increases. Both the saturation magnetization $M_{sat}$ and Curie temperature $T_c$ decrease linearly with W-content y, and both $M_{sat}$ and $T_c$ go to zero at critical concentration of $y_c$ ~ 9.50 at.% W. The effect of Cu addition on both the saturation magnetization $M_sat$ and Curie temperature $T_c$ decrease linearly with Cu-content x in $[Ni_{97at.%}W_{3at.%}]_{100-x}Cu_x$ alloy tapes with compositions x = 0, 1, 3, 5, and 7 at.%. The results confirm that [Ni-W]-Cu alloy tapes can have much reduced ferromagnetism as Cu-content x increases.

  • PDF

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.

Synthesize of Nd2Fe14B Powders from 1-D Nd2Fe14B Wires using Electrospinning Process (전기방사 공정을 이용하여 1차원 Nd2Fe14B섬유로부터의 Nd2Fe14B 자석분말 합성)

  • Eom, Nu Si A;Noh, Su;Haq, Muhammad Aneeq;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.477-480
    • /
    • 2019
  • Magnetic 0-D Nd2Fe14B powders are successfully fabricated using 1-D Nd2Fe14B nanowire formed by an efficient and facile electrospinning process approach. The synthesized Nd-Fe-B fibers and powders are investigated for their microstructural, crystallographic, and magnetic properties according to a series of subsequent heat treatments. Each heat-treatment process leads to the removal of organic impurities and the formation of the respective oxides/composites of Nd, Fe, and B, resulting in the formation of Nd2Fe14B powders. Nd-Fe-B fibers exhibit the following magnetic properties: The coercivity (Hci) of 3260 Oe, a maximum magnetization at 3T of 109.44 emu/g, and a magnetization remanence (Mr) of 44.11 emu/g. This process easily mass produces hard magnetic Nd2Fe14B powders using a 1-D synthesis process and can be extended to the experimental design of other magnetic materials.

Effect of Carrier Gas on the Microstructure and Magnetic Properties of Co Nanoparticles Synthesized by Chemical Vapor Condensation (화학기상응축공정(Chemical Vapor Condensation)으로 제조된 Co 나노분말의 미세구조 및 자기적 성질에 미치는 운송기체의 영향)

  • ;X. L. Dong
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2004
  • The nano-sized Co particles were successfully synthesized by chemical vapor condensation (CVC) process using the precursor of cobalt carbonyl ($Co_2(CO)_8$). The influence of carrier gases on the microstructure and magnetic properties of nanoparticles was investigated by means of XRD, TEM, XPS and VSM. The Co nano-particles with different phases and shapes were synthesized with a change of carrier gas : long string morphologies with coexistence of fcc and hcp structure in Ar carrier gas condition; finer Co core in a mass of cobalt oxide with only fcc structure in He; rod type cobalt oxide phase in Ar+6vol%$O_2$. The saturation magnetization and coercivity was lower in Co nanoparticles synthesized in He carrier gas, due to their finer size.