전기방사 공정을 이용하여 1차원 Nd₂Fe₁₄B섬유로부터의 Nd₂Fe₁₄B 자석분말 합성

엄누시아^a·노 \uparrow ^{a,b}·학 무하마드 아닉^{a,c}·김범성^{a,c,*}

"한국생산기술연구원 희소금속산업기술센터, ^b한양대학교 신소재공학과, '과학기술연합대학교 희소소재 및 반도체패키징공학과

Synthesize of Nd₂Fe₁₄B Powders from 1-D Nd₂Fe₁₄B Wires using Electrospinning Process

Nu Si A Eom^{*a*}, Su Noh^{*a,b*}, Muhammad Aneeq Haq^{*a,c*} and Bum Sung Kim^{*a,c,**}

 ^aKorean Institute for Rare Metals, Korea Institute of Industrial Technology, 156, Gaetbeol-ro, Yeonsu-gu, Incheon, 21999, Republic of Korea
^bHanyang university, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
^cCritical Materials and Semiconductor Packaging Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
(Received October 14, 2019; Revised November 19, 2019; Accepted November 20, 2019)

Abstract Magnetic 0-D Nd₂Fe₁₄B powders are successfully fabricated using 1-D Nd₂Fe₁₄B nanowire formed by an efficient and facile electrospinning process approach. The synthesized Nd-Fe-B fibers and powders are investigated for their microstructural, crystallographic, and magnetic properties according to a series of subsequent heat treatments. Each heat-treatment process leads to the removal of organic impurities and the formation of the respective oxides/composites of Nd, Fe, and B, resulting in the formation of Nd₂Fe₁₄B powders. Nd-Fe-B fibers exhibit the following magnetic properties: The coercivity (H_{ci}) of 3260 Oe, a maximum magnetization at 3T of 109.44 emu/g, and a magnetization remanence (M_r) of 44.11 emu/g. This process easily mass produces hard magnetic Nd₂Fe₁₄B powders using a 1-D synthesis process and can be extended to the experimental design of other magnetic materials.

.....

Keywords: Electrospinning, Nd-Fe-B magnetic powder, Fibers

1. 서 론

영구자석은 산업 전반에 걸쳐 핵심적인 역할을 수행하는 기능성 소재로서, 대부분의 영구자석들은 사마리움코 발트(SmCo₅, Sm₂Co₁₇), 네오듐계 자석(Nd₂Fe₁₄B)과 같은 희토류 원소에 기반을 두고 있다. 영구자석을 소자로서 이용하기 위해서는 포화자기, 자기이방성, 큐리온도 등 자성물질이 가지는 본질적 특성과 에너지적, 보자력, 열적 안정성 등 비본질적 특성들이 모두 고려되어야 한다[1]. 그

중 영구자석 특징을 결정하는 핵심적인 물리량은 최대에 너지적과 보자력이다[2]. Nd-Fe-B 자석의 높은 최대에너 지적(29~53 MGOe) 값은 알니코자석(Alnico, 1~7.5 MGOe), 페라이트자석(Ferrite, 1.1~4.5 MGOe), 사마리움코발트 (18~33 MGOe)자석과 비교하여 약 1/50 정도 크기로 같은 자기 에너지 특성을 나타낼 수 있기 때문에[3], 경량화 및 소형화가 필요한 전자정보기기, 자기공명영상장치(MRI) 와 같은 의료기기 부품, 전기/하이브리드 자동차 모터 등 다양한 분야에서 활발히 사용 및 연구가 되고 있다[4, 5].

*Corresponding Author: Bum Sung Kim, TEL: +82-32-458-5119, FAX: +82-32-850-0306, E-mail: bskim15@kitech.re.kr

⁻ 엄누시아: 연구원, 노 수·학 무하마드 아닉: 학생, 김범성: 수석연구원

일반적으로 영구 자석 분말은 가스분무법[6], HDDR (hydrogenation: 수소화 - disproportionation: 분해 - desorption: 탈가스 - recombination: 재결합)[7], 폭발법(Shock wave), 기계적 합금화[8]와 같은 분말야금법 또는 급냉응 고법 등을 통하여 제조가 되고 있으며, 상기 제조방법은 고가의 출발 금속원료 사용 등에 의한 제조비용 상승과 부가적인 고에너지 소모 등의 단점을 갖고 있다[9]. 이외 에 전구체를 이용한 졸-겔법(sol-gel process), 수열합성법, 초음파 분무 열분해공정(spray-pyrolysis) 등 화학적 합성 법으로도 자석 분말을 합성할 수 있지만[10], 분말을 얻기 위해서는 복잡한 제조 공정이 필요하고[11], 대량생산에 용이하지 않은 단점이 있으며, Nd-Fe-B와 같은 3성분계 조성 물질을 합성하는 것은 매우 어렵다.

이에 본 연구에서는 대량생산에 용이한 화학적 합성법 중 하나인 전기방사장치를 이용하여 전구체로부터 1차원 의 Nd-Fe-B기반 나노선을 합성한 후, 열처리 및 세척 공 정을 통하여 0차원의 Nd-Fe-B 영구자석 분말을 합성하였 다. 합성된 자성체의 구조적·자기적 특성 평가를 수행하여 나노선을 이용한 자석 분말 합성법에 대하여 제안하고자 하였다.

2. 실험방법

본 연구에서는 섬유형상의 Nd₂Fe₁₄B 나노 구조체 합성 을 위하여 전기방사 공정을 수행하였다. Nd, Fe, B 원소 를 제공할 전구체 물질로서 질산네오디윰 6수화물 (Nd(NO₃)₃·6H₂O, 99.9%, Sigma-Aldrich Inc.), 질산제이철 9수화물(Fe(NO3)3·9H2O, 98%, Junsei Inc.), 붕산(B(OH)3, 99.5%, Sigma-Aldrich Inc.)을 선택하였고, 점도 조절을 위 한 폴리비닐피로리돈(PVP, M_w≈ 1,300,000, Sigma-Aldrich Inc., Korea), 환원제로는 칼슘(Ca, 99.5%, Alfa Aesar Co., Inc., England)을 준비하였다. 최종 조성이 2.2:14:1.1 (Nd:Fe:B)인 전구체 용액을 제조하였고, 고르게 교반된 전 구체 용액은 Nanospider 장비(NSLAB, Elmarco Inc., Republic of Czech)을 이용하여 전기방사를 진행하였다. 전기방사 조건은 캐리지 속도 300 mm/s, 외부인가 전압 50 kV으로 진행하였으며, 이 때 전기방사 장치내의 온도 는 35℃, 습도는 15% 미만으로 유지하였다. 포집된 섬유 는 NO₃, H₂O와 같은 유기물을 제거하기 위하여 도가니에 담아 900℃의 전기로에서 하소(calcination)를 하였고, 하 소된 산화물 시료를 Ca 환원제와 같이 장입하여 아르곤 분위기 하의 700°C에서 환원을 진행하였다. 환원된 Nd2Fe14B 표면의 Ca 부산물 및 미반응 환원제는 수세하였 고, 80℃의 진공오븐에서 하루 건조하여 최종적으로 Nd₂Fe₁₄B섬유를 준비하였다.

합성된 Nd₂Fe₁₄B섬유의 형상과 직경분포를 측정하고자 전계방출형 주사전자현미경 분석(FE-SEM, JSM-7100F, JEOL Ltd., Japan)을 수행하였고, 각 단계에 따른 나노선 의 직경 변화를 측정하기 위하여 이미지J 프로그램 (ImageJ program, National Institutes of Health, MD, USA) 을 이용하여 나노섬유 30개의 평균 직경을 측정하였다. X 선 회절 분석(XRD, Bruker Co., USA)을 통해 결정학적 특성을 확인하였다. 자기적 특성 평가는 상온에서 직류자 화특성 측정장치(VSM, VersaLab VSM, Quantum Design Co., USA)를 이용하여 최대 3T의 인가 자장 세기에 따른 자화값을 얻었다.

3. 결과 및 고찰

Fig. 1은 전기방사장치를 이용하여 Nd-Fe-B가 포함된 섬유부터 하소, 환원 열처리 및 수세 공정에 따른 섬유의 형상을 나타낸 것이다. 전기방사장치를 이용하여 형성된 Nd-Fe-B 섬유는 (Fig. 1(a)) 직경 약 380 nm를 가지며, 하 소(Fig. 1(b)) 열처리 후에는 유기물 제거로 인하여 평균 약 340 nm 으로 감소하였다. 이후 환원(Fig. 1(c)) 공정에 서는 표면에 CaO가 흡착되면서 직경이 약 2배 이상 증가 하였고, 1차원의 섬유 형상을 유지하였다. Fig. 1(a)와 Fig. 1(b)의 Nd-Fe-B섬유 형상에는 큰 변화가 없지만 환원 공 정 후인 Fig. 1(c)은 표면에 형성된 CaO에 의하여 직경이 증가하고 표면이 매끄럽지 않았다. Fig. 1(d)은 세척공정에 의해 형성된 Nd-Fe-B 분말형상이며, 아래의 식 [equation 1] 반응으로 인하여 선택적인 Ca을 제거할 수 있다[12].

 $CaO + 2H_2O \rightarrow Ca(OH)_2 + H_2O$ [equation 1]

일반적인 칼슘 계열의 화합물(예, CaO, Ca, CaOH)을 선

Fig. 1. SEM images of the synthesis Nd-Fe-B based fibers: (a) as-spun, (b) calcination, (c) reduction and (d) washing process.

Journal of Korean Powder Metallurgy Institute (J. Korean Powder Metall. Inst.)

Fig. 2. X-ray diffraction patterns of the synthesized Nd-Fe-B based fibers with heat-treatment process.

택적으로 제거하는 수세과정에서 고온의 열이 발생하기 때문에 섬유의 표면이 깨지는 문제점이 발생한다[13]. 본 연구에서는 이러한 특성을 이용하여 수세시간을 길게 함 으로서, Nd-Fe-B 섬유형상으로부터 분말 형상의 Nd-Fe-B 을 회수 하도록 하였다.

Fig. 2는 각 공정 단계에서 X-선 회절패턴이다. 하소 열 처리를 통하여 Nd, Fe, B전구체 입자가 탈염 처리 되면서, 세 종류의 산화물 상(NdFeO₃, Fe₂O₃, NdBO₃)[9]과 Nd상 이 형성되었음을 확인 할 수 있다. 이때 형성된 FeNdO₃와 Fe₂O₃ 상은 반응식 [equation 2], NdBO₃은 반응식 [equation 3]으로 형성된다.

 $4Nd(NO_3)_3 + 3O_2(g) \rightarrow 2Nd_2O_3 + 12NO_3(g)$ [equation 2-1]

 $3Fe(NO_3)_3 + 2O_2(g) \rightarrow Fe_3O_4 + 9NO_3(g)$ [equation 2-2]

 $Nd_2O_3 + 4Fe_3O_4 + O_2(g) \rightarrow 2FeNdO_3 + 5Fe_2O_3$

[equation 2-3]

 $Nd_2O + 3H_2O \rightarrow 2Nd(OH)_3$ [equation 3-1]

 $2Nd(OH)_3 + 2B(OH)_3 \rightarrow 2NdBO_3 + 3H_2(g)$ [equation 3-2]

이 후, Ca 환원 공정을 통하여 Nd₂Fe₁₄B 상이 형성되었 으나, 사용된 환원제의 CaO 피크 세기가 상대적으로 커서 분석이 용이하지 않았다. CaO은 수세 공정을 통하여 상당 부분 제거가 되었고, Nd₂Fe₁₄B 상이 확인되었다.

그림 3은 Nd₂Fe₁₄B 나노입자의 자기적 특성평가를 위한 자화곡선이다. 그림 2에서 Nd₂Fe₁₄B 나노입자 표면에 CaO가 완벽히 제거되지 않았다. CaO는 비자성물질이기 때문에, 잔존 CaO에 의해 Nd₂Fe₁₄B 나노입자는 낮은 자 화 값을 갖는다[14, 15]. 3T에서 최대 자화값은 109.44 (emu/g), M_r 값은 44.11 (emu/g)으로 낮은 자성 값을 보였

Fig. 3. Hysteresis loop of $Nd_2Fe_{14}B$ nanoparticles formed from $Nd_2Fe_{14}B$ wire.

고, 보자력은 3.3 kOe의 값을 나타냈다. 졸-겔 공정으로 합 성된 자석분말(3.9 kOe)[15]과 볼 밀링 공정으로 제조된 자석분말(2.5~4 kOe)[16]과 비교하여 유사하거나 향상된 자기적 특성 값을 나타냈다.

4. 결 론

본 연구에서는 기존의 기계적 합성법이 아닌 화학적 합 성법 중 하나인 전기방사공정을 통하여 대량생산이 용이 한 Nd₂Fe₁₄B 분말 합성공정을 제안하고자 하였다. 합성된 Nd-Fe-B 섬유를 각 후처리 공정에 따른 구조적, 결정학적, 자기적 특성을 평가하여 Nd₂Fe₁₄B 분말의 형성 메커니즘 을 설명하였고, 이를 통하여 0차원과 가장 가까운 1차원 의 나노섬유를 이용하여 0차원의 자석 분말 합성법에 대 하여 제안 할 수 있었다.

감사의 글

본 논문은 한국생산기술연구원의 연구개발적립금사업 "1차원 FeNdB 교환자기결합형 복합자석 제조기술 개발 (UR190005)"의 지원을 받아 수행된 연구임.

References

- [1] J.-S. Hong: J. Korean Magn. Soc., 22 (2012) 188.
- [2] J. G. Lee, J. H. Yu, H. J. Kim and T. S. Jang: J. Korean Magn. Soc., 22 (2012) 58.
- [3] Integrated Magnetics: Rare Earth Permanent Magnets Technical Data Book, USA (2014).
- [4] M. W. Lee and T. S. Jang: J. Korean Powder Metall. Inst.,

23 (2016) 432.

- [5] D. Shin, D.-H. Kim, Y.-C. Park and J.-G. Kim: J. Korean Powder Metall. Inst., 23 (2016) 447.
- [6] D. Brown, B.-M. Ma and Z. Chen: J. Magn. Magn. Mater., 248 (2002) 432.
- [7] O. Gutfleisch and I. R. Harris: J. Phys. D: Appl. Phys., 29 (1996) 2255.
- [8] L. Schultz, J. Wecker and E. Hellstern: J. Appl. Phys., 61 (1987) 3583.
- [9] Y.-K. Baek, Y.-T. Seo, J.-G. Lee, D. S. Kim, D. S. Bae and C.-J. Choi: J. Korean Powder Metall. Inst., 20 (2013) 359.
- [10] J.-C. Kim, G.-H. Ha, C.-J. Choi and B.-K. Kim: J. Korean Powder Metall. Inst., **12** (2005) 239.

- [11] M. H. Choi, J. H. Yu, D. H. Kim, K.-C. Chung and Y. D. Kim: J. Korean Powder Metall. Inst., 17 (2010) 263.
- [12] D. Brockmann and M. Janse: Advances in Coral Husbandry in Public Aquariums, R. J. Leewls and M. Janse (Ed.), Burgers' Zoo, Arnhem (2008) 133.
- [13] Y. Wang, J. Ahn, D. Kim, W. J. Ren, W. Liu, Z. D. Zhang and C. J. Choi: J. Magn. Magn. Mater., 439 (2017) 91.
- [14] V. Swaminathan, P. K. Deheri, S. D. Bhame and R. V. Ramanujan: Nanoscale, 5 (2013) 2718.
- [15] P. K. Deheri, V. Swaminathan, S. D. Bhame, Z. Liu and R. V. Ramanujan: Chem. Mater., 22 (2010) 6509.
- [16] N. G. Akdogan, W. Li and G. C. Hadjipanayis: J. Appl. Phys., 109 (2011) 07A759.