Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.244

Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid  

Wu, Xiangfan (College of Mechanical and Electrical Engineering, China University of Mining and Technology)
Xiao, Xingming (College of Mechanical and Electrical Engineering, China University of Mining and Technology)
Tian, Zuzhi (College of Mechanical and Electrical Engineering, China University of Mining and Technology)
Chen, Fei (College of Mechanical and Electrical Engineering, China University of Mining and Technology)
Jian, Wang (College of Mechanical and Electrical Engineering, China University of Mining and Technology)
Publication Information
Abstract
Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than $100^{\circ}C$, the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.
Keywords
preparation; shear yield stress; magnetorheological fluid; nanoparticles; temperature;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. R. Agustin, F. Donado, and R. E. Rubio, J. Magn. Magn. Mater. 335, 149 (2013).   DOI
2 Y. H. Huang, Y. H. Jiang, X. B. Yang, and R. Z. Xu, J. Magn. 20, 317 (2015).   DOI
3 H. J. Kim, G. C. Kim, G. S. Lee, T. M. Hong, and H. J. Choi, J. Nanosci. Nanotechno, 13, 6005 (2013).   DOI
4 Z. Z. Tian, F. Chen, and D. M. Wang, J. Intell. Mater. Syst. Struct. 25, 1937 (2014).   DOI
5 O. Erol, B. Gonenc, D. Senkal, S. Alkan, and H. Gurocak, J. Intell. Mater. Syst. Struct. 23, 427 (2012).   DOI
6 G. A. Ewijk, G. J. Vroege, and A. P. Philipse, J. Magn. Magn. Mater. 201, 31 (1999).   DOI
7 X. B. Yang, Y. H. Jiang, Y. H. Huang, R. Z. Xu, H. G. Piao, G. M. Jia, and X. Y. Tan, J. Magn. 19, 345 (2014).   DOI
8 Z. Z. Tian, F. Chen, and D. M. Wang, J. Intell. Mater. Syst. Struct. 26, 414 (2015).   DOI
9 M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, J. Magn. Magn. Mater. 374, 716 (2015).   DOI
10 X. Tang and H. Conrad, J. Phys. D Appl. Phys. 33, 3026 (2000).   DOI
11 J. M. Ginder, L. C. Davis, and L. D. Elie, Int. J. Mod. Phys. B 10, 3293 (1996).   DOI
12 J. M. Ginder and L. C. Davis, Appl. Phys. Lett. 65, 3410 (1994).   DOI
13 Y. M. Han, S. Kim, J. W. Kang, and S. B. Choi, Smart Mater. Struct. 24, 115016 (2015).   DOI
14 A. Spaggiari and, E. Dragoni, J. Intell. Mater. Syst. Struct. 26, 1764 (2015).   DOI
15 D. M. Wang, B. Zi, Y. Zeng, Y. F. Hou, and Q. R. Meng, J. Mater. Sci. 49, 8459 (2014).   DOI
16 H. Sahin, X. Wang, and F. Gordaninejad, J. Intell. Mater. Syst. Struct. 20, 2215 (2009).   DOI