• Title/Summary/Keyword: mass interference

Search Result 141, Processing Time 0.019 seconds

Estimation of Phosphorus Concentration in Silicon Thin Film on Glass Using ToF-SIMS

  • Hossion, M. Abul;Murukesan, Karthick;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2021
  • Evaluating the impurity concentrations in semiconductor thin films using time of flight secondary ion mass spectrometry (ToF-SIMS) is an effective technique. The mass interference between isotopes and matrix element in data interpretation makes the process complex. In this study, we have investigated the doping concentration of phosphorus in, phosphorus doped silicon thin film on glass using ToF-SIMS in the dynamic mode of operation. To overcome the mass interference between phosphorus and silicon isotopes, the quantitative analysis of counts to concentration conversion was done following two routes, standard relative sensitivity factor (RSF) and SIMetric software estimation. Phosphorus doped silicon thin film of 180 nm was grown on glass substrate using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using ToF-SIMS, the phosphorus-31 isotopes were detected in the range of 101~104 counts. The silicon isotopes matrix element was measured from p-type silicon wafer from a separate measurement to avoid mass interference. For the both procedures, the phosphorus concentration versus depth profiles were plotted which agree with a percent difference of about 3% at 100 nm depth. The concentration of phosphorus in silicon was determined in the range of 1019~1021 atoms/cm3. The technique will be useful for estimating distributions of various dopants in the silicon thin film grown on glass using ToF-SIMS overcoming the mass interference between isotopes.

Stability Analysis of Rotating Discs Due to Head interference (헤드간섭으로 인한 회전 디스크의 안정성 분석)

  • 임경화
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.865-872
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disc and a head that contacts the disc. In the analytic model, head interference is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular discs. The multiple scale method is utilized to perform the stability system that shows the existence of instability associated with parametric resonances. Using the formulated system , instability regions of optical recording disc are investigated with variation of mass, stiffness and friction force of a head, respectively. The simulation results show that the stiffness of a head is the most sensitive parameter on the instability of the disc.

  • PDF

Attenuation of Background Molecular Ions and Determination of Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry at Cool Plasma Condition

  • 박창준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.706-710
    • /
    • 1997
  • Isotope ratios of K, Ca, Cr and Fe are measured at cool plasma condition generated using high carrier flow rate and relatively low RF power of 900 W. Background molecular ions are suppressed to below 100 counts which give isobaric interference to the analytes. The background ions show different attenuation characteristics at increased carrier flow rate and hence for each element different carrier flow rate should be used to measure isotope ratios without isobaric interference. Isotope ratios are measured at both scan and peak-hopping modes and compared with certified or accepted ratios. The measured isotope ratios show some mass discrimination against low mass due to low ion energy induced from a copper shield to eliminate capacitive coupling of plasma with load coil.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Side Milling (워엄 스크루 가공용 사이드 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for side milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

The Cutting Tool-workpiece Interference Simulation for Worm Screw Machining by Planetary Milling (워엄 스크루 가공을 위한 플래내터리 밀링의 공구 간섭 시뮬레이션)

  • Lee, Min-Hwan;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.47-54
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear. For mass production of a high quality worm, the current rolling process is substituted with the milling process. Since the milling process enables the integration of all operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. In this study, the tooling system for planetary milling on a CNC lathe to improve machinability is developed. However, the cutting tool-workpiece interference is important factors to be considered for producing high quality worms. For adaptability of various worms machining, the tool-workpiece interference simulation system based on a tool-tip trajectory model is developed. The developed simulation system is verified through several kinds of worms and experimental results.

Accurate Analysis of Chromium in Foodstuffs by Using Inductively Coupled Plasma Mass Spectrometry with a Collision-Reaction Interface

  • Lee, Seung Ha;Kim, Ji Ae;Choi, Seung Hyeon;Kim, Young Soon;Choi, Dal Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1689-1692
    • /
    • 2013
  • Food is a common source of chromium (Cr) exposure. However, it is difficult to analyze Cr in complex food matrices by using inductively coupled plasma mass spectrometry (ICP-MS) because the major isotope, $^{52}Cr$, is masked by interference generated by the sample matrix and the plasma gas. Among the systems available to minimize interference, the recently developed collision-reaction interface (CRI) has a different structure relative to that of other systems (e.g., collision cell technology, octopole reaction system, and dynamic reaction cell) that were designed as a chamber between the skimmer cone and quadrupole. The CRI system introduces collision or reaction gas directly into the plasma region through a modified hole of skimmer cone. We evaluated the use of an CRI ICP-MS system to minimize polyatomic interference of $^{52}Cr$ and $^{53}Cr$ in various foodstuffs. The $^{52}Cr$ concentrations measured in the standard mode were 2-3 times higher than the certified values. This analytical method based on an ICP-MS system equipped with a CRI of helium gas was effective for Cr analysis in complex food matrices.

Determination of Bi Impurity in Lead Stock Standard Solutions by Hydride-generation Inductively Coupled Plasma Mass Spectrometry

  • Park, Chang J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.233-236
    • /
    • 2004
  • Total impurity analysis of a primary standard solution is one of the essential procedures to determine an accurate concentration of the standard solution by the gravimetry. Bi impurity is determined in Pb standard solutions by inductively coupled plasma mass spectrometry (ICP-MS). The direct nebulization of the Pb standard solution produces a significant amount of the Pb matrix-induced molecular ions which give rise to a serious spectral interference to the Bi determination. In order to avoid the spectral interference from the interferent $^{208}PbH^+$, the hydride generation method is employed for the matrix separation. The Bi hydride vapor is generated by reaction of the sample solution with 1% sodium borohydride solution. The vapor is then directed by argon carrier gas into the ICP after separation from the mixture solution in a liquid-gas separator made of a polytetrafluoroethylene membrane tube. The presence of 1000 ${\mu}$g/mL Pb matrix caused reduction of the bismuthine generation efficiency by about 40%. The standard addition method is used to overcome the chemical interference from the Pb matrix. Optimum conditions are investigated for the hydride-generation ICPMS. The detection limit of this method is 0.5 pg/mL for the sample solutions containing 1000 ${\mu}$g/mL Pb matrix.

Determination of Rare Earth Elements Abundance in Alkaline Rocks by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (ICP-MS를 이용한 알칼리암의 희토류원소 정량분석)

  • Hur, Soon-Do;Lee, Jong-Ik;Lee, Mi-Jung;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • Inductively coupled plasma mass spectrometry (ICP-MS) is useful instrument for determining abundance of rare earth elements, due to very low detection limits and rapid data acquisition. In this article, two methods are used for decomposition of alkaline rocks; close vessel acid digestion and $Na_2Co_3$ fusion. The two analytical results show good agreements. Considering total dissolved solids and detection limits, the most adequate dilution factor is 5,000 times. Polyatomic ion interferences during analysis can give rise to Inaccuracies. After correction from oxide and hydroxide interference, the analytical result show 20-30% decrease for Gd and Tm, 10-20% decrease for Tb and Er. In comparing the analytical results from KORDI with other institutes, most rare earth elements abundance show good agreements except Lu.

The Matrix Effect of Biological Concomitant Element on the Signal Intensity of Ge, As, And Se in Inductively Coupled Plasma/Mass Spectrometry

  • Park, Kyung-Su;Kim, Sun-Tae;Kim, Young-Man;Kim, Yun-je;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1389-1393
    • /
    • 2002
  • The non-spectroscopic interference effects that occurred in inductively coupled plasma/mass spectrometry were studied for Ge, As and Se in human urine and serum. Many biological samples contain Na, K, Cl and organic compounds, which may cause the enhancement and depression on the analyte signal. The effect of 1% concomitant elements such as N, Cl, S, P, C, Na, and K on a 100 ㎍/L germanium, arsenic and selenium signal has been investigated by ICP/MS. The interference effects were not in the same direction. It appeared that concomitant elements such as Cl, S, and C induce an enhancement effect, whereas N and P did not show any significant effect. And, Na and K caused a depression. We have found a link between the abundance of analytes and the ionization potential of concomitant elements (eV), except carbon and nitrogen.

MALDI Mass Spectrometric Analysis of Nonderivatized Steroids Using Cyclodextrin-supported 2,5-Dihydroxybenzoic Acid as Matrix

  • Son, Jeongjin;Cha, Sangwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1409-1412
    • /
    • 2014
  • Sex hormones are important metabolites in vertebrates' development and reproduction. For rapid screening sex hormones, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the promising analytical platforms, but MALDI MS faces many challenges in detecting steroids such as low ionization efficiency and matrix background interference. One potential strategy to overcome matrix interference in the low m/z region is using a cyclodextrin (CD)-supported matrix for steroid analysis since CD-supported matrixes are known to effectively suppress matrix-related ion signals. In this study, we aimed to find the optimal CD-supported matrix for the analysis of the nonderivatized sex steroids. Our results showed that the ${\alpha}CD$-supported 2,5-dihydroxybenzoic acid (DHB) matrix efficiently ionized all three major classes of sex hormones, estrogens, androgens, and progestagens, with low or no matrix background and also with high sensitivity. In addition, the ${\alpha}CD$-supported DHB matrix mainly generated molecular ions or protonated ions of sex hormones, and this enabled us to obtain information-rich tandem mass spectra which potentially lead to unambiguous identification of steroid species from complex metabolite mixtures.