Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.5.1409

MALDI Mass Spectrometric Analysis of Nonderivatized Steroids Using Cyclodextrin-supported 2,5-Dihydroxybenzoic Acid as Matrix  

Son, Jeongjin (Department of Chemistry, Hankuk University of Foreign Studies)
Cha, Sangwon (Department of Chemistry, Hankuk University of Foreign Studies)
Publication Information
Abstract
Sex hormones are important metabolites in vertebrates' development and reproduction. For rapid screening sex hormones, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the promising analytical platforms, but MALDI MS faces many challenges in detecting steroids such as low ionization efficiency and matrix background interference. One potential strategy to overcome matrix interference in the low m/z region is using a cyclodextrin (CD)-supported matrix for steroid analysis since CD-supported matrixes are known to effectively suppress matrix-related ion signals. In this study, we aimed to find the optimal CD-supported matrix for the analysis of the nonderivatized sex steroids. Our results showed that the ${\alpha}CD$-supported 2,5-dihydroxybenzoic acid (DHB) matrix efficiently ionized all three major classes of sex hormones, estrogens, androgens, and progestagens, with low or no matrix background and also with high sensitivity. In addition, the ${\alpha}CD$-supported DHB matrix mainly generated molecular ions or protonated ions of sex hormones, and this enabled us to obtain information-rich tandem mass spectra which potentially lead to unambiguous identification of steroid species from complex metabolite mixtures.
Keywords
MALDI MS; Steroids; Estrogen; Estrone; Cyclodextrin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamaguchi, S.; Fujita, T.; Fujino, T.; Korenaga, T. Analyt. Sci. 2008, 24, 1497.   DOI
2 Guild, G. E.; Lenehan, C. E.; Walker, G. S. Int. J. Mass Spectrom. 2010, 294, 16.   DOI
3 Wu, H.-P.; Yu, C.-J.; Lin, C.-Y.; Lin, Y.-H.; Tseng, W.-L.J. Am. Soc. Mass Spectrom. 2009, 20, 875.   DOI
4 Fujita, T.; Fujino, T.; Hirabayashi, K.; Korenaga, T. Analyt. Sci. 2010, 26, 743.   DOI   ScienceOn
5 Yonezawa, T.; Asano, T.; Fujino, T.; Nishihara, H. Chem. Phys. 2013, 419, 17.   DOI
6 Niedermeyer, T. H. J.; Strohalm, M. Plos One 2012, 7.
7 Griffiths, W. J.; Wang, Y.; Alvelius, G.; Liu, S.; Bodin, K.; Sjovall, J. J. Am. Soc. Mass. Spectrom. 2006, 17, 341.   DOI
8 Biancotto, G.; Angeletti, R.; Traldi, P.; Silvestri, M.; Saccon, M.; Guidugli, F. J. Mass. Spectrom. 2002, 37, 1266.   DOI
9 Bourcier, S.; Poisson, C.; Souissi, Y.; Kinani, S.; Bouchonnet, S.; Sablier, M. Rapid Commun. Mass Spectrom. 2010, 24, 2999.   DOI
10 Kosanam, H.; Prakash, P. K.; Yates, C. R.; Miller, D. D.; Ramagiri, S. Anal. Chem. 2007, 79, 6020.   DOI
11 Montsko, G.; Vaczy, A.; Maasz, G.; Mernyak, E.; Frank, E.; Bay, C.; Kadar, Z.; Ohmacht, R.; Wolfling, J.; Mark, L. Anal. Bioanal. Chem. 2009, 395, 869.   DOI
12 Wang, Y. Q.; Hornshaw, M.; Alvelius, G.; Bodin, K.; Liu, S. Y.; Sjovall, J.; Griffiths, W. J. Anal. Chem. 2006, 78, 164.   DOI