• Title/Summary/Keyword: mass flow rate

Search Result 1,717, Processing Time 0.027 seconds

An Empirical Correlation of Refrigerant Flow Rate Through Coiled Capillary Tubes (코일 형상을 고려한 모세관 냉매유량 예측 상관식)

  • Park, Cha-Sik;Jang, Yong-Hee;Lee, Young-Soo;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.91-98
    • /
    • 2007
  • Air-conditioners use a spirally coiled capillary tube as an expansion device to enhance compactness of the unit. However, most empirical correlations in open literature were developed for straight capillary tubes without considering coiled effects on the mass flow rate. The objectives of this study are to investigate the flow characteristics of coiled capillary tubes and to develop a generalized correlation for mass flow rate through coiled capillary tubes. The mass flow rates through the coiled capillary tubes and straight capillary tubes were measured by varying operating conditions and tube geometry. The condensing temperatures varied at 40.5, 47.5 and $54.5^{\circ}C$, and subcoolings altered at 3.5, 6.5 and $11.5^{\circ}C$. The mass flow rates of the coiled capillary tubes decreased by 5 to 16% compared with those of the straight capillary tubes at the same operating conditions. An empirical correlation was developed by introducing equivalent length of capillary tube with non-dimensional parameters for coiled shape. The present correlation predicts the data with average and standard deviations of 0.33% and 3.24%, respectively.

Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger (트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.723-729
    • /
    • 2019
  • Turbochargers are an effective device to reduce the fuel consumption. In this study, the mass flow rate of pulsating flow in the twin-scroll turbocharger for the gasoline engine of passenger vehicles was measured. Pulsating flow was achieved using a pulse generator and the mass flow rate of the unsteady pulsating flow was analyzed by comparing it with those of the steady flow. The pulse generator consisted of a rotating upper plate and a fixed lower plate. To measure the mass flow rate of unsteady flow, the orifice flow meter equipped with the difference pressure transducer was used. To analyze the low speed performance of the turbocharger, the measurement was carried out in the speed of turbocharger from 60,000rpm to 100,000rpm. The mass flow parameters of the unsteady pulsating flow showed a large difference compared to those of the steady flow. Those of the unsteady flow showed the hysteresis loop surrounding the mass flow parameters of the steady flow and the maximum variation of the mass flow parameters were 5.0 times those of the steady flow. This phenomenon is the result of the filling and emptying the turbine volute space due to pulsating flow.

Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement (고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정)

  • Choi, Sung-Ju;Yoo, Young-Eun;Kim, Sun-Kyoung
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF

Effects of Pressure Tapping on flow Rate Characteristics of Triangular Separate Bar Differential Pressure flow Meter (삼각 분리 막대형 차압 유량계의 압력탭이 유량 특성에 미치는 영향)

  • Lee, Choong-Hoon;Park, Dong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1680-1686
    • /
    • 2009
  • Flow characteristics of a differential pressure flow meters which have a shape of triangular separate bar (TSB) was investigated according to machining conditions in pressure tapping holes. Size of pressure tapping holes is machined with either 1.0 mm or 1.5 mm in diameter. Also, number of pressure tapping holes are drilled either 9 or 17. The mass flow rate of the TSB flow meters are calibrated with a laminar flow meter by connecting them in line. The mass flow rate in the TSB flow meters are plotted with a non-dimensional parameter H which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters, and atmospheric pressure. An empirical correlation between the mass flow rate at the TSB flow meter and the non-dimensional parameter H was obtained. The empirical correlation showed highly linear relationship between the mass flow rate and the non-dimensional parameter H. The hole size of the pressure tapping holes has a bigger effect on the flow rate than the number of the tapping holes.

  • PDF

Shower-Head Film Cooling on the Leading Edge of a Turbine Blade: Measurements of Local Blowing Ratio and Flow Visualizations (터빈 블레이드 선단에서의 샤워헤드 막냉강 - 국소분사율 측정 및 유동의 가시화 -)

  • Jeong, Chul Hee;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.419-430
    • /
    • 1999
  • Measurements of local blowing ratio and ammonia-diazo flow visualizations have been conducted for a shower-head film cooling on a first-stage turbine stator. In this study, six rows of normal holes are drilled symmetrically on the semicircular leading edge of a simulated blunt body. The measurements show that for an average blowing ratio based on freestream velocity, M, of 0.5, local average mass flow rate through the first two rows of the holes is less than those through the second and third two rows of the holes, and the fraction of mass flow rate through the first two rows to total mass flow rate has a tendency to increase with the increment of M. The flow visualizations reveal that the injection through the first two row results in inferior film coverage even In the case of M = 0.5, meanwhile the row of holes situated at farther downstream location provides higher film-cooling performances for all tested M. This is because film-cooling effectiveness depends on local mainflow velocity at the hole location as well as the mass flow rate through each row.

Effects of ortho-para hydrogen conversion on hydrogen liquefaction performance (Ortho-para 수소변환이 수소액화성능에 미치는 영향)

  • 최항집;강병하;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • A direct hydrogen liquefaction equipment has been developed and tested, which consists of a GM refrigerator, a liquefaction vessel, a radiation shield, a cryostat, and an ortho-para converter with catalyst. The effect of ortho-para hydrogen conversion on the performance of hydrogen liquefaction has been investigated. The time needed for the hydrogen liquefaction process with hydrogen pressure charge of 4 atm was delayed to around 75 minutes, and the liquefied mass flow rate of the hydrogen was about 0.0150∼ 0.0205 g/s when the hydrogen was liquefied with the direct hydrogen liquefaction system considering ortho-para conversion. With ortho-para conversion, the liquefied mass flow rate decreased up to 20%. Considering ortho-para conversion, there were up to 30% increase in the work input per unit liquefied mass flow rate. When the ortho-para conversion was considered, FOM decreased to be about 0.031∼0.045.

  • PDF

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

Characteristics of the Air Flow Variation by Throttle Step Change in a Gasoline Engine (스로틀 개폐에 따른 가솔린 엔진의 비정상상태 유량변화 특성)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.92-101
    • /
    • 1996
  • In a gasoline engine, the characteristics of air flow is very important not only for the design of the intake system geometry bout also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement of the induction air mass. In this study, an air flow rate measurement was conducted by using the hot wire flow meter at the upstream of the intake port and the throttle. At the upstream of the throttle, the overshoot phenomena of the air flow rate by fast throttle opening were analyzed with choked flow. At the upstream of the intake port, the cylinder variation of the air flow rate and the difference between fast throttle opening and closing were showed during the unsteady state by the throttle step change. The results of this study can be used for the design of the throttle valve geometry and cylinder by cylinder control.

  • PDF

Development and Evaluation of Differential Pressure Type Mass Flow Controller for Semiconductor Fabrication Processing (반도체 공정용 차압식 질량 유량 제어 장치의 개발 및 성능 평가)

  • Ahn, Jin-Hong;Kang, Ki-Tai;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.29-34
    • /
    • 2008
  • This paper describes the fabrication and characterization of a differential pressure type integrated mass-flow controller made of stainless steel for reactive and corrosive gases. The fabricated mass-flow controller is composed of a normally closed valve and differential pressure sensor. A stacked solenoid actuator mounted on a base-block is utilized for precise and rapid control of gas flow. The differential pressure flow sensor consisting of four diaphragms can detect a flow rate by deflection of diaphragm. By a feedback control from the flow sensor to the valve actuator, it is possible to keep the flow rate constant. This device shows a fast response less than 0.3 sec. Also, this device shows accuracy less than 0.1% of full scale. It is confirmed that this device is not attacked by toxic gas, so the integrated mass-flow controller can be applied to advanced semiconductor processes which need fine mass-flow control corrosive gases with fast response.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.