• Title/Summary/Keyword: mass damper

Search Result 623, Processing Time 0.028 seconds

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF

Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석)

  • Park, Jae-Hak;Jung, Jong-Chul;Huh, Kun-Soo;Chung, Chung-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

Wafer Motion Control of a Clean Tube System (클린튜브 시스템의 웨이퍼 정지 제어)

  • 신동헌;최철환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.459-462
    • /
    • 2003
  • This paper presents a force model of the clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean air. The recovering force from the holes for floating wafers is modeled as a linear spring and thus the wafer motion is modeled as a mass-spring-damper system. The propelling forces are modeled as linear along with the wafer location. The paper also proposes the control method to emit and stop a wafer at the center of a control unit. It shows the minimum value of the propelling force to leave from the control unit. In order to stop the wafer, it utilizes the exact time when a wafer arrives at the position to activate the propelling force. Experiments with the clean tube system built for 12 inch wafer shows the validity of the proposed model and the algorithm.

  • PDF

Measurment of Damping Ratio of Fuel Sloshing in Baffled Liquid Propellant Tank of KSR-III Rocket (KSR-III 로켓의 액체 연료 탱크 내에서 발생하는 슬로슁 현상의 배플에 의한 감쇄율 측정)

  • Park, Soon-Hong;Yoo, Joon-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.2-323
    • /
    • 2002
  • Sloshing of fuel in a liquid propellant tank is an important part of the dynamic and the stability analysis of the rocket. Baffles are installed in a propellant tank to reduce the instability due to sloshing. Multi degree of spring-mass-damper model was used to model sloshing of fuel in an axisymmetric tank. The natural frequencies and damping ratios are estimated. In order to verify the estimated natural frequencies and damping ratios, tests are performed for the real propellant tank of KSR-III with single ring baffle. Results of fuel sloshing analysis are compared with those of tests.

  • PDF

Development of n Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • Lee, Gun-Myung;L.Koss;Lee, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.324.2-324
    • /
    • 2002
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker. The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are fumed on and off in a sequential manner to simulate a traveling slide of an excitation force. (omitted)

  • PDF

Robust Time-Optimal Control for Coarse/Fine Dual-Stage Systems

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.317-320
    • /
    • 1999
  • A robust end time optimal conかof strategy for dual-stage servo system is presented. The time optimal trajectory for a mass-damper system is determined and given os a reference input to the servo system. The feedback controller is constructed so that the fine stage tracks the coarse stage errors and robustly designed as the“perturbation compensated sliding mode control(PCSMC)”law, a combination of slid-ing mode controller(SMC) and perturbation observer(PO). In addition, a null motion controller which regulates the fine stage at its neutral position is designed based on the“dynamic consistency”So, the overall dual-stage servo system exhibits the robust and time-optimal performance. The inherent merit and performance of the dual-stage system will be shown.

  • PDF

Alternative Dynamic Condensation Methods for Viscously Damped Models (점성감쇠 모텔을 위한 새로운 동적 압축 방법)

  • Jung Yang-Ki;Qu Zu-Qing
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1048-1055
    • /
    • 2006
  • Two ways can be used for dynamic condensation of viscously damped structural models. One is reducing the model in physical space at first and then transferring it to state space. The other is ,condensing the model in state space directly. Two iterative schemes for each way are given respectively. Hence four iterative schemes for dynamic condensation of nonclassically damped models are discussed in this paper. A high building with a tuned mass damper is applied to show the efficiency of these schemes.

  • PDF

A Study on the Optimum Design of Base Isolated Structures (I) (면진 구조물의 최적설계에 관한 연구(I))

  • 정정훈;김병현;양용진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.339-347
    • /
    • 2001
  • A probabilistic optimum design method of the base isolation system consisting of linear spring, viscous damper and frictional element is presented. For the probabilistic approach, the base excitation is assumed to be a stationary Gaussian filtered random process. For optimum design, the objective function and constraints are derived based on the stochastic responses of the system. As a numerical example, the optimum design problem of a three-story base isolated shear type structure is formulated and solved by the sequential quadratic programming method. As a result, the effects of variation of design variables such as parameters of the base isolation system and the mass of base on the objective function and constraints are investigated and the optimum parameters of the base isolation system under study are derived.

  • PDF

An Evaluation of Crashworthiness for the Full Rake KHST Using ID Model (1차원 모델을 이용한 한국형 고속전철의 충돌 안전도 평가)

  • 구정서;조현직;김동성;윤영한
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.217-222
    • /
    • 2001
  • The best method to evaluate crashworthiness of a trainset as a whole is to analyse one dimensional dynamic model composed of nonlinear dampers, springs and bars, and masses. In this study, crashworthiness of KHST was evaluated by analysing a nonlinear spring/bar-damper-mass model. The numerical results show that the KHST can easily absorb kinetic energy at lower impact force and acceleration in a heavy collision, when compared with KTX. Also, the KHST can be protected from any damage in its carbody and components except the prepared energy absorbing tube in a light collision, like a traint-to-train accident at speed under 8 kph. However, the KTX can be much damaged in the a light collision because there is no energy absorbing tube.

  • PDF